Effects of Soil Temperature on the Development of Young Eggplants (Solanum Melongena)

1976 ◽  
Vol 12 (3) ◽  
pp. 273-277 ◽  
Author(s):  
Irena Rylski ◽  
J. Nothmann ◽  
M. Spiegelman

The effect of different soil temperatures on the development of young eggplants was examined at extreme seasonal air temperatures. In winter, rising soil temperatures accelerated growth, but lowering the soil temperature in summer had no effect and extremely high soil temperatures caused very poor plant development.

2015 ◽  
Vol 12 (1) ◽  
pp. 23-30 ◽  
Author(s):  
C. Bertrand ◽  
L. González Sotelino ◽  
M. Journée

Abstract. Soil temperatures at various depths are unique parameters useful to describe both the surface energy processes and regional environmental and climate conditions. To provide soil temperature observation in different regions across Belgium for agricultural management as well as for climate research, soil temperatures are recorded in 13 of the 20 automated weather stations operated by the Royal Meteorological Institute (RMI) of Belgium. At each station, soil temperature can be measured at up to 5 different depths (from 5 to 100 cm) in addition to the bare soil and grass temperature records. Although many methods have been developed to identify erroneous air temperatures, little attention has been paid to quality control of soil temperature data. This contribution describes the newly developed semi-automatic quality control of 10-min soil temperatures data at RMI.


2013 ◽  
Vol 10 (7) ◽  
pp. 4465-4479 ◽  
Author(s):  
K. L. Hanis ◽  
M. Tenuta ◽  
B. D. Amiro ◽  
T. N. Papakyriakou

Abstract. Ecosystem-scale methane (CH4) flux (FCH4) over a subarctic fen at Churchill, Manitoba, Canada was measured to understand the magnitude of emissions during spring and fall shoulder seasons, and the growing season in relation to physical and biological conditions. FCH4 was measured using eddy covariance with a closed-path analyser in four years (2008–2011). Cumulative measured annual FCH4 (shoulder plus growing seasons) ranged from 3.0 to 9.6 g CH4 m−2 yr−1 among the four study years, with a mean of 6.5 to 7.1 g CH4 m−2 yr−1 depending upon gap-filling method. Soil temperatures to depths of 50 cm and air temperature were highly correlated with FCH4, with near-surface soil temperature at 5 cm most correlated across spring, fall, and the shoulder and growing seasons. The response of FCH4 to soil temperature at the 5 cm depth and air temperature was more than double in spring to that of fall. Emission episodes were generally not observed during spring thaw. Growing season emissions also depended upon soil and air temperatures but the water table also exerted influence, with FCH4 highest when water was 2–13 cm below and lowest when it was at or above the mean peat surface.


1952 ◽  
Vol 5 (2) ◽  
pp. 303 ◽  
Author(s):  
ES West

Soil temperatures recorded at Griffith over an 8 year period at a depth ranging from 1 in. to 8 ft. have been examined and compared with air temperatures. The observed fluctuations m the soil temperatures fit closely the theoretical equation for the propagation of a simple harmonic temperature wave into the so11. The diffusivity of the sol1 has been deduced and compared with values found by other workers in other localities. The annual wave of the daily mean temperature at the surface of the soil has been deduced and compared with the annual wave of the dally mean air temperature and the differences in the means, amplitudes, and phase displacements have been discussed.


2016 ◽  
Vol 43 (10) ◽  
pp. 961 ◽  
Author(s):  
Greg J. Rebetzke ◽  
Bangyou Zheng ◽  
Scott C. Chapman

Increases in air and soil temperatures will impact cereal growth and reduce crop yields. Little is known about how increasing temperatures will impact seedling growth and crop establishment. Climate forecast models predict that by 2060, mean and maximum air temperatures in the Australian wheatbelt will increase by 2−4°C during the March–June sowing period, and particularly at lower latitudes. Concomitant increases in soil temperature will shorten coleoptile length to reduce crop establishment, particularly where deep sowing to access sub-surface moisture. Mean coleoptile length was reduced in commercial wheat (Triticum aestivum L.) germplasm with increasing soil temperature (106 mm and 51 mm at 15°C and 31°C, respectively). Coleoptile lengths of modern semidwarf varieties were significantly (P < 0.01) shorter than those of older tall wheats at 15°C (95 mm and 135 mm) and 31°C (46 mm and 70 mm). A 12-parent diallel indicated large additive and small non-maternal genetic effects for coleoptile length at 15°C and 27°C. Large genotype rank changes for coleoptile length across temperatures (rs = 0.37, P < 0.05) contributed to smaller entry-mean heritabilities (0.41–0.67) to reduce confidence in selection for long-coleoptile genotypes across contrasting temperatures. General combining ability effects were strongly correlated across temperatures (rp = 0.81, P < 0.01), indicating the potential of some donors in identification of progeny with consistently longer coleoptiles. Warmer soils in future will contribute to poor establishment and crop failure, particularly with deep-sown semidwarf wheat. Breeding long-coleoptile genotypes with improved performance will require targeted selection at warmer temperatures in populations incorporating novel sources of reduced height and greater coleoptile length.


2020 ◽  
Author(s):  
Niklas J. Wickander ◽  
Pil U. Rasmussen ◽  
Bryndís Marteinsdóttir ◽  
Johan Ehrlén ◽  
Ayco J. M. Tack

AbstractThe arctic and alpine regions are predicted to experience one of the highest rates of climate change, and the arctic vegetation is expected to be especially sensitive to such changes. Understanding the ecological and evolutionary responses of arctic plant species to changes in climate is therefore a key objective. Geothermal areas, where temperature gradients naturally occur over small spatial scales, and without many of the confounding environmental factors present in latitudinal and other gradient studies, provide a natural experimental setting to examine the impact of temperature on the response of arctic-alpine plants to increasing temperatures. To test the ecological and evolutionary response of the circumpolar alpine bistort (Bistorta vivipara) to temperature, we collected plant material and soil from areas with low, intermediate, and high soil temperatures and grew them in all combinations at three different temperatures. At higher experimental soil temperatures, sprouting was earlier, and plants had more leaves. Sprouting was earlier in soil originating from intermediate temperature and plants had more leaves when grown in soil originating from low temperatures. We did not find evidence of local adaptation or genetic variation in reaction norms among plants originating from areas with low, intermediate, and high soil temperature. Our findings suggest that the alpine bistort has a strong plastic response to warming, but that differences in soil temperature have not resulted in genetic differentiation. The lack of an observed evolutionary response may, for example, be due to the absence of temperature-mediated selection on B. vivipara, or high levels of gene flow balancing differences in selection. When placed within the context of other studies, we conclude that arctic-alpine plant species often show strong plastic responses to spring warming, while evidence of evolutionary responses varies among species.


FLORESTA ◽  
2004 ◽  
Vol 34 (2) ◽  
Author(s):  
Leocadio Grodzki ◽  
Ronaldo Viana Soares ◽  
Antonio Carlos Batista ◽  
Paulo Henrique Caramori

O sistema agroflorestal da bracatinga utiliza queima após o corte e retirada da madeira, dando lugar à semeadura de espécies agrícolas. A queima controlada altera a temperatura do ar e do solo. A mudança de refletividade da superfície é mais rápida que dos reflorestamentos próximos. A transformação das folhas e galhos secos em cinza após a queima, faz com que haja mudanças do albedo, alterando o balanço energético. Os resultados mostram temperaturas do ar de 600ºC por 20-40 segundos a 1 cm do solo e de 100 a 300°C a 60 e 160cm do solo, respectivamente, durante 1 minuto. Temperaturas de 100ºC ao nível do solo residiram por mais de 3 minutos. A temperatura do solo não foi afetada a 2,5cm de profundidade. Durante a queima, a temperatura se elevou em 1ºC. O albedo de 0,24 antes da queima, passou para 0,21 logo após a queima. Após 60 dias, o albedo voltou a 0,24 devido a recomposição da vegetação. FIRE EFECTS ON SOME MICROMETEOROLOGICAL VARIABLES IN A BRACATINGA (Mimosa scabrella, Benth.) FOREST, COLOMBO, PR Abstract The bracatinga agriculture-forest systems adopted by farmers consists on burning the residues after wood’s harvesting prior to sowing the crops. This procedure is repeated each 6 to 8 years in the same area. The prescribed burning changes air and soil temperatures. Changes in reflectivity are faster then in the surrounding forest areas. Transforming leaves and branches into ashes after burning changes the albedo of the surface, altering the energetic balance. Results showed air temperatures of 600°C during 20 to 40 seconds, 1cm above the soil surface, and 100 to 300°C at 60 and 160cm above the soil surface, during 1 minute. Temperatures over 100°C on the soil surface were observed for more than 3 minutes. Soil temperature was not affected at 2.5cm depth; during burning, the temperature raised only 1ºC. The surface albedo that was 0,24 before the burning changed to 0,21 after burning and returned to 0.24 sixty days after the burning due to the vegetation regeneration.


Soil Research ◽  
2011 ◽  
Vol 49 (4) ◽  
pp. 305 ◽  
Author(s):  
Brian Horton ◽  
Ross Corkrey

Soil temperatures are related to air temperature and rainfall on the current day and preceding days, and this can be expressed in a non-linear relationship to provide a weighted value for the effect of air temperature or rainfall based on days lag and soil depth. The weighted minimum and maximum air temperatures and weighted rainfall can then be combined with latitude and a seasonal function to estimate soil temperature at any depth in the range 5–100 cm. The model had a root mean square deviation of 1.21–1.85°C for minimum, average, and maximum soil temperature for all weather stations in Australia (mainland and Tasmania), except for maximum soil temperature at 5 and 10 cm, where the model was less precise (3.39° and 2.52°, respectively). Data for this analysis were obtained from 32–40 Bureau of Meteorology weather stations throughout Australia and the proposed model was validated using 5-fold cross-validation.


2007 ◽  
Vol 132 (1) ◽  
pp. 112-119 ◽  
Author(s):  
Barbara J. Daniels-Lake ◽  
Robert K. Prange ◽  
Sonia O. Gaul ◽  
Kenneth B. McRae ◽  
Roberto de Antueno ◽  
...  

In Fall 2001 in Nova Scotia's Annapolis Valley (Canada), several million kilograms of processing and table-stock potatoes (Solanum tuberosum L.) were affected by a severe “musty” “off” flavor and “off” odor that persisted after cooking. 2,4,6-Trichloroanisole (TCA), a potent musty flavor/odor compound that is not known to be a potato metabolite was detected in samples of three potato lots rejected by consumers. To determine the role and source of TCA in the affected crop, samples of tubers from 30 fields were evaluated, including examination of production inputs and industry estimation of the “off” flavor, expert organoleptic assessment of flavor–odor intensity, and analytical quantitation of the TCA content of affected tubers, followed by a soil challenge to provoke TCA production. Production of “musty” potatoes was associated with unusually hot (>30 °C) soil temperatures during the 2001 growing season, and in some cases with γ-cyclohexane hexachloride (CHC) applied to control soil wireworm (putatively Limonius agonus Say). TCA quantitation and organoleptic assessment were in general agreement. Samples of soils from “idle” fields (no agricultural inputs for at least 8 years) and “production” fields (produced “off”-flavor potatoes in 2001) were subjected to several factors: 1) presence or absence of potato tubers; 2) preheating at 30 °C for 3 days, or no preheating; and followed by 3) no pesticides, or γ-CHC, chlorothalonil, chlorpyrifos, fludioxonil, imidacloprid, or linuron applied singly, or all six pesticides applied together. After incubation for 2 weeks at 22 °C day/14 °C night with a 14-hour photoperiod, solid-phase microextraction/gas chromatographic–mass spectrometric analysis revealed that untreated soils released small quantities of TCA (2.8 mol·kg−1) whereas higher quantities of TCA were present in soils treated with pesticides (3.8–6.6 mol·kg−1). The quantity of TCA released was not significantly affected by the presence or absence of potato tubers, but it was increased by preheating the soil sample, regardless of the other two factors, and by an interaction between pesticides and soil source. The quantity of TCA from both “idle” and “production” soils was highest when γ-CHC was added alone (214% and 284% of checks respectively). TCA production increased in the presence of the other five pesticides applied singly in “production” soils, but not in “idle” soils. Application of the six pesticides together increased TCA in both soils. Such an association of TCA-based “musty” “off” flavor with field soils containing γ-CHC and other pesticides combined with high soil temperature had not been reported previously.


1998 ◽  
Vol 78 (3) ◽  
pp. 493-509 ◽  
Author(s):  
Dale S. Nichols

Soil temperature strongly influences physical, chemical, and biological activities in soil. However, soil temperature data for forest landscapes are scarce. For 6 yr, weekly soil temperatures were measured at two upland and four peatland sites in north central Minnesota. One upland site supported mature aspen forest, the other supported short grass. One peatland site was forested with black spruce, one supported tall willow and alder brush, and two had open vegetation — sedges and low shrubs. Mean annual air temperature averaged 3.6 °C. Mean annual soil temperatures at 10- to 200-cm depths ranged from 5.5 to 7.6 °C among the six sites. Soils with open vegetation, whether mineral or peat, averaged about 1 °C warmer annually and from 2 to 3 °C warmer during summer than the forested soils. The tall brush peatland was cooler than all other sites due to strong groundwater inputs. The mineral soils warmed more quickly in the spring, achieved higher temperatures in the summer, and cooled more quickly in the fall than the peat soils; however, the greatest temperature differences between mineral and peat soils occurred at or below 50 cm. In the upper 20 cm, vegetation and groundwater had greater effects on temperature than did soil type (mineral or peat). Summer soil temperatures were higher, relative to air temperature, during periods of greater precipitation. This effect was minimal at upland sites but substantial in the peatlands. In spite of the persistent sub-freezing air temperatures typical of Minnesota winters, significant frost developed in the soils only in those years when severe cold weather arrived before an insulating cover of snow had accumulated. Key words: Soil temperature, vegetation effects, forest soils, groundwater, peatlands


1998 ◽  
Vol 78 (2) ◽  
pp. 291-300 ◽  
Author(s):  
Margaret G. Schmidt ◽  
Aynslie E. Ogden ◽  
Kenneth P. Lertzman

In this study we attempted to determine if vine maple priority gaps show similar trends in temperature and moisture status to those reported in the literature for treefall gaps and whether temperature and moisture status differed between microtopographic positions (pits and mounds). Biweekly measurements of mid-day soil and air temperature, moisture contents at 30-, 50- and 80-cm depths, and depths to the groundwater table were made in pit and mound locations within six vine maple priority gaps paired with six conifer canopy sites. Trends did not follow those found in treefall gaps: vine maple gaps had similar mid-day temperature and moisture status to the surrounding conifer forest. Larger gaps had higher mid-day air temperatures in the summer, higher mid-day soil temperatures in the spring and summer, and greater amounts of throughfall in the spring and summer than smaller gaps. Trends in mid-day soil temperature and moisture status for pit and mound microtopography followed those reported in the literature. Pits were significantly cooler in summer and warmer in winter than mounds and pits were wetter than mounds in all seasons. This study suggests that soil microtopography has an effect on soil climate that overwhelms the influence of vine maple gaps. Key words: Vine maple, canopy gap, soil moisture, soil temperature, microtopography, pits and mounds


Sign in / Sign up

Export Citation Format

Share Document