scholarly journals A Musty “Off” Flavor in Nova Scotia Potatoes Is Associated with 2,4,6-Trichloroanisole Released from Pesticide-treated Soils and High Soil Temperature

2007 ◽  
Vol 132 (1) ◽  
pp. 112-119 ◽  
Author(s):  
Barbara J. Daniels-Lake ◽  
Robert K. Prange ◽  
Sonia O. Gaul ◽  
Kenneth B. McRae ◽  
Roberto de Antueno ◽  
...  

In Fall 2001 in Nova Scotia's Annapolis Valley (Canada), several million kilograms of processing and table-stock potatoes (Solanum tuberosum L.) were affected by a severe “musty” “off” flavor and “off” odor that persisted after cooking. 2,4,6-Trichloroanisole (TCA), a potent musty flavor/odor compound that is not known to be a potato metabolite was detected in samples of three potato lots rejected by consumers. To determine the role and source of TCA in the affected crop, samples of tubers from 30 fields were evaluated, including examination of production inputs and industry estimation of the “off” flavor, expert organoleptic assessment of flavor–odor intensity, and analytical quantitation of the TCA content of affected tubers, followed by a soil challenge to provoke TCA production. Production of “musty” potatoes was associated with unusually hot (>30 °C) soil temperatures during the 2001 growing season, and in some cases with γ-cyclohexane hexachloride (CHC) applied to control soil wireworm (putatively Limonius agonus Say). TCA quantitation and organoleptic assessment were in general agreement. Samples of soils from “idle” fields (no agricultural inputs for at least 8 years) and “production” fields (produced “off”-flavor potatoes in 2001) were subjected to several factors: 1) presence or absence of potato tubers; 2) preheating at 30 °C for 3 days, or no preheating; and followed by 3) no pesticides, or γ-CHC, chlorothalonil, chlorpyrifos, fludioxonil, imidacloprid, or linuron applied singly, or all six pesticides applied together. After incubation for 2 weeks at 22 °C day/14 °C night with a 14-hour photoperiod, solid-phase microextraction/gas chromatographic–mass spectrometric analysis revealed that untreated soils released small quantities of TCA (2.8 mol·kg−1) whereas higher quantities of TCA were present in soils treated with pesticides (3.8–6.6 mol·kg−1). The quantity of TCA released was not significantly affected by the presence or absence of potato tubers, but it was increased by preheating the soil sample, regardless of the other two factors, and by an interaction between pesticides and soil source. The quantity of TCA from both “idle” and “production” soils was highest when γ-CHC was added alone (214% and 284% of checks respectively). TCA production increased in the presence of the other five pesticides applied singly in “production” soils, but not in “idle” soils. Application of the six pesticides together increased TCA in both soils. Such an association of TCA-based “musty” “off” flavor with field soils containing γ-CHC and other pesticides combined with high soil temperature had not been reported previously.

1996 ◽  
Vol 36 (8) ◽  
pp. 971 ◽  
Author(s):  
DG Abrecht ◽  
KL Bristow

Climatic induced hazards (e.g. water deficit, high soil temperature and high soil strength) that adversely affect seedling emergence and establishment of annual crops on red earth soils (Kandsols) at Katherine in the Daly basin of the Northern Territory are reviewed and results of some recent simulation studies and experiments are presented. Simulation studies, using 100 years of historical weather data, have shown that maize and sorghum density at Katherine is rarely reduced by water deficit during crop establishment. However, the median number of days between 1 December and 20 January during which seedlings may be exposed to damagingly high soil temperature (>55�C between 2 and 7 days after sowing) was 5.5, out of an estimated 21 days suitable for sowing. While the exposure of a crop to inclement conditions during establishment may have immediate and dramatic effects on the mortality of pre-emergent and post-emergent seedlings, there may also be longer-term and less evident adverse effects on crop growth and development. The responses of developing seedlings to inclement conditions following sowing are described and management options (eg adjusting planting dates, changing crop species, changing seedbed configurations, using surface mulch) for the amelioration of the seedbed environment are discussed. Of the possible management options for ameliorating adverse seedbed conditions during crop establishment in the semi-arid tropics (SAT), it appears that the best practice is to maintain a soil surface cover (mulch) in close proximity to the emerging seedlings. The presence of surface mulch extends the window of opportunity for establishing crops by slowing soil drying, delaying the onset of high soil temperatures and high soil impedance, and by improving the availability of water to the young seedlings at this critical stage.


2004 ◽  
Vol 129 (6) ◽  
pp. 795-801 ◽  
Author(s):  
Xiaozhong Liu ◽  
Bingru Huang

Previous studies found that high soil temperature is more detrimental than high air temperature for the growth of creeping bentgrass (Agrostis palustris L.). The objective of the study was to investigate changes in fatty acid composition and saturation levels in leaves and roots for creeping bentgrass exposed to high soil temperature. Shoots and roots of `Penncross' plants were subjected to a differential air/soil temperature of 20/35 °C in a growth chamber. Soil temperature was controlled at 35 °C using an immersion circulating heater in water bath. Shoot injury induced by high soil temperature was evaluated by measuring level of lipid peroxidation expressed as malonyldialdehyde (MDA) content, chlorophyll content, and photochemical efficiency (Fv/Fm) of leaves. MDA content increased while chlorophyll content and Fv/Fm decreased at high soil temperature. The content of total fatty acids and different species of fatty acids were analyzed in both leaves and roots. Total fatty acid content in leaves increased initially at 5 days of high soil temperature and then decreased at 15 days, while total fatty acid content in roots decreased, beginning at 5 days. Linolenic acid was the major fatty acid in leaves and linoleic acid and palmitic acid were the major fatty acids in roots of creeping bentgrass. Leaf content of all fatty acid components except oleic acid increased initially and then decreased at high soil temperature. Root content of all fatty acid components except palmitoleic acid and oleic acid decreased, beginning at 5 d of high soil temperature. Oleic acid in leaves and palmitoleic and oleic acid in roots did not change during the entire experimental period. Leaf content of saturated fatty acids and unsaturated fatty acids increased during the first 5 to 10 days of high soil temperature and decreased at 15 and 25 days, respectively. Root content of saturated fatty acids and unsaturated fatty acids decreased beginning at 5 days of high soil temperature. Double bond index decreased in both leaves and roots. High soil temperature induced changes in fatty acid composition and saturation levels in leaves and roots, and this could be associated with physiological damages in leaves even though only roots were exposed to high temperature.


2020 ◽  
Author(s):  
Niklas J. Wickander ◽  
Pil U. Rasmussen ◽  
Bryndís Marteinsdóttir ◽  
Johan Ehrlén ◽  
Ayco J. M. Tack

AbstractThe arctic and alpine regions are predicted to experience one of the highest rates of climate change, and the arctic vegetation is expected to be especially sensitive to such changes. Understanding the ecological and evolutionary responses of arctic plant species to changes in climate is therefore a key objective. Geothermal areas, where temperature gradients naturally occur over small spatial scales, and without many of the confounding environmental factors present in latitudinal and other gradient studies, provide a natural experimental setting to examine the impact of temperature on the response of arctic-alpine plants to increasing temperatures. To test the ecological and evolutionary response of the circumpolar alpine bistort (Bistorta vivipara) to temperature, we collected plant material and soil from areas with low, intermediate, and high soil temperatures and grew them in all combinations at three different temperatures. At higher experimental soil temperatures, sprouting was earlier, and plants had more leaves. Sprouting was earlier in soil originating from intermediate temperature and plants had more leaves when grown in soil originating from low temperatures. We did not find evidence of local adaptation or genetic variation in reaction norms among plants originating from areas with low, intermediate, and high soil temperature. Our findings suggest that the alpine bistort has a strong plastic response to warming, but that differences in soil temperature have not resulted in genetic differentiation. The lack of an observed evolutionary response may, for example, be due to the absence of temperature-mediated selection on B. vivipara, or high levels of gene flow balancing differences in selection. When placed within the context of other studies, we conclude that arctic-alpine plant species often show strong plastic responses to spring warming, while evidence of evolutionary responses varies among species.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 667c-667
Author(s):  
Charlotte Mundy ◽  
Nancy G. Creamer ◽  
Jane Frampton

Regional growers have expressed an interest in the feasibility of producing potatoes on wide beds. Using wide beds decreases compaction and may increase water available to the crop due to the elimination of postplanting cultivation, or hilling, required in conventional rows. The middle row of wide beds may have cooler soil temperatures than the other rows in the bed. In addition, wide beds allowed for a planting density 1.5-times greater than conventional rows, which could significantly increase yields. Potatoes, `Atlantic', were planted mid-March into conventional rows on 38-inch centers and 6-foot 4-inch-wide beds, each bed with three rows. Plots were 50 feet long. Initial soil moisture contents in the middle of the bed, the outer rows of the bed and the conventional rows were not significantly different. Initial soil temperature data suggests that fluctuations in temperature are greatest in the conventional rows and least in the middle row of the wide beds. Soil temperature and soil moisture are reported. Marketable yields from wide beds are compared to marketable yields from conventional rows. Influence on potato size distribution and quality factors also are reported.


Sign in / Sign up

Export Citation Format

Share Document