CARBON (13C) AND NITROGEN (15N) TRANSLOCATION IN A MAIZE-STRIGA HERMONTHICA ASSOCIATION

2005 ◽  
Vol 41 (3) ◽  
pp. 321-333 ◽  
Author(s):  
GODWIN K. S. AFLAKPUI ◽  
P. J. GREGORY ◽  
R. J. FROUD-WILLIAMS

The translocation of C and N in a maize-Striga hermonthica association was investigated at three rates of nitrogen application in a glasshouse experiment. The objectives were to measure the transfer of C and N from maize to S. hermonthica and to determine whether the amount of N in the growing medium affected the proportions of C and N transferred. Young plants of maize were labelled in a 13CO2 atmosphere and leaf tips were immersed in (15NH4)2SO4 solution. The Striga×N interaction was not significant for any of the responses measured. Total dry matter for infected maize was significantly smaller than for uninfected maize from 43 to 99 days after planting, but N application increased total dry matter at all sampling times. Infected maize plants partitioned 39–45% of their total dry matter to the roots compared with 28–31% for uninfected maize. Dry matter of S. hermonthica was not affected by the rate of N applied. S. hermonthica derived 100% of its carbon from maize before emergence, decreasing to 22–59% thereafter; the corresponding values for nitrogen were up to 59% pre-emergence and up to 100% after emergence. The relative proportions of nitrogen depleted from the host (up to 10%) were greater than those of carbon (maximum 1.2%) at all times of sampling after emergence of the parasite. The results show that the parasite was more dependent on the host for nitrogen than for carbon.

2020 ◽  
Vol 56 (4) ◽  
pp. 620-632
Author(s):  
Alpha Y. Kamara ◽  
Abebe Menkir ◽  
David Chikoye ◽  
Abdullahi I. Tofa ◽  
Aminu A. Fagge ◽  
...  

AbstractStriga hermonthica infestation causes significant losses of maize yield in the Nigerian savannas and several technologies have been developed and promoted to control Striga in maize. However, since no single technology has been found to be effective against Striga, integrated management is needed to achieve satisfactory and sustainable Striga control. Both on-station and on-farm trials were undertaken from 2013 to 2015 in Bauchi and Kano States of Nigeria to evaluate the performance of integrated Striga control technologies. In the on-station trials, a soybean–maize rotation did not suppress Striga in maize in either location. However, nitrogen application suppressed and reduced Striga infection, except in Bauchi in 2014. The soybean–maize rotation accompanied by N application reduced Striga damage in both locations. On farmers’ fields, rotating soybean with maize significantly reduced Striga infection. At the same time, the use of maize varieties with a combined tolerance to drought and resistance to Striga parasitism also increased maize grain yield on farmers’ fields, probably due to three factors: a reduction in Striga infection, reduced effects of a mid-season moisture deficit, and increased uptake of nutrients from the soil. We concluded that the use of Striga-resistant maize varieties in combination with the application of N fertilizer and rotation with soybean could increase the productivity of maize in Striga-infested fields in the Nigerian savannas.


2021 ◽  
Vol 38 (2) ◽  
pp. 178-183
Author(s):  
C. C. Onyeonagu ◽  
J. E. Asiegbu

A study was conducted to determine the effects of cutting frequency and fertilizer-N rates on growth and production of guinea grass (Panicum maximum Jacq). The experiment was conducted in Nsukka, Nigeria. Treatments comprised four levels of fertilizer N (0, 150, 300 and 450 kg N ha ') and four cutting intervals (3, 6, 9 and 12 weekly intervals). Plant height, tiller number and herbage dry matter yields were significantly increased by 6%, 44% and 53%, respectively, during the establishment year when fertilizer-Nrate was increased from 0 to 450 kg N ha'. The extent of weed cover was significantly (P < 0.05) reduced by 33% in 2000 when fertilizer-N rate was increased from 0 to 450 kg N ha'. Increase in interval between cuts from 3 to 12 weeks significantly (P < 0.05) increased plant height in all the years. Plant height was increased (P < 0.05) by 28% 34% and 28% in 2001, 2002 and 2004, respectively, when fertilizer N was increased from 0 to 450 kg ha'. Application of Nat 450 kg ha produced similar plant heights in 2001 with the 300 kg N ha' but differed from the 150 kg N ha'. Increase in nitrogen application progressively increased (P<0.05) plant height in 2002 and 2004. Key words: , , , 


1965 ◽  
Vol 45 (2) ◽  
pp. 153-164 ◽  
Author(s):  
L. B. MacLeod ◽  
L. P. Jackson ◽  
R. F. Bishop ◽  
C. R. MacEachern

In two 3-year cycles of a field experiment annual N treatments were superimposed on mineral treatments applied annually and triennially to a permanent pasture sward.Applications of P and K were reflected by changes in exchangeable K and acid-soluble plus adsorbed P. There was somewhat greater penetration of K than of P and soil levels of both were generally lowest where rate of N application was highest.Yields varied from year to year but tended to be more uniform with annual than with triennial mineral treatments. In the 6-year period average yields for all 0-, P-, K-, and P–K-treated plots were approximately 1.3, 1.6, 1.5, and 2.0 tons per acre of dry matter. Time of nitrogen application had little influence on total yield but seasonal distribution of herbage was much more uniform with nitrogen applied in summer than in spring. Soil moisture, which was a major factor in the response obtained with nitrogen applied in summer, was limiting during the late summer in two of the three years measured.Percentages of P and K in grass reflected the mineral treatments which had much less influence on botanical composition and species foliage cover than N. This element suppressed legumes, increased grass, and markedly influenced the K level in grass.


2016 ◽  
Vol 46 (2) ◽  
pp. 159-168 ◽  
Author(s):  
Claudio Hideo Martins da Costa ◽  
Carlos Alexandre Costa Crusciol ◽  
Rogério Peres Soratto ◽  
Jayme Ferrari Neto ◽  
Edemar Moro

ABSTRACT Topdressing or pre-seeding nitrogen (N) application increases phytomass production, providing a higher nutrients accumulation and indirectly favoring the subsequent crop. However, N fertilization can alter the dry matter decomposition and nutrients release dynamics. This study aimed at evaluating the decomposition rate, cellulose, lignin and nutrients release speed from palisadegrass as a function of N fertilization. The experimental design was randomized blocks with four replications, in a factorial scheme constituted by two N fertilization levels and six sampling times after desiccation [0, 14, 34, 41, 51 and 68 days after management (DAM)]. The topdressing N fertilization on palisadegrass increases the dry matter production and N accumulation, but does not alter the decomposition and release speed. N fertilization reduces the C/N ratio, but it does not change the contents of cellulose and lignin and the decomposition and release of N, K, Ca, Mg, C and Si. The amounts of P and S accumulated in the plant and released into the soil increase with N fertilization. The maximum release rates occur within 0-14 DAM, being more intensive for P and S when N is applied. These results demonstrate the high potential of this species for crop-livestock integration systems, with some advantages that can be potentialized with higher N doses.


1972 ◽  
Vol 79 (2) ◽  
pp. 205-215 ◽  
Author(s):  
A. H. Charles

SUMMARYPopulations of Lolium perenneL. derived from fields where the management was paddock grazing were compared with plants from breeder's seed of the cultivars originally sown at the collection sites. In the first trial the ‘survivor’ population derived from an S. 24 ley was better adapted to withstand intensive sheep grazing and high nitrogen application (672 kg/ha/ annum) than either S. 24 or Stormont Zephyr. Extra treading by sheep in addition to that involved in the high stock density (1186sheep/ha) used at the time of grazing produced only a small reduction in yield of dry matter. In the second trial, the ‘survivor’ population derived from an S. 23 ley had a higher yield of dry matter than S. 23 at the high level of N application (672 kg/ha/annum). There was no difference in the yields when 168 kg N/ha/annum was applied. In both field trials yield in the year of sowing was high for all swards, although the survivor populations were slower to establish than the original cultivars. The evaluation of the ryegrass populations in terms of dry-matter yield was affected by the small quantity of Poa trivialispresent when this grass was sown with the ryegrasses. In the second trial this conclusion also applied to yield of nitrogen in the herbage.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Aloysius Beah ◽  
Alpha Y. Kamara ◽  
Jibrin M. Jibrin ◽  
Folorunso M. Akinseye ◽  
Abdullahi I. Tofa ◽  
...  

This paper assessed the application of the Agricultural Production Systems sIMulator (APSIM)–maize module as a decision support tool for optimizing nitrogen application to determine yield and net return of maize production under current agricultural practices in the Nigeria savannas. The model was calibrated for two maize varieties using data from field experiments conducted under optimum conditions in three locations during the 2017 and 2018 cropping seasons. The model was evaluated using an independent dataset from an experiment conducted under different nitrogen (N) levels in two locations within Southern and Northern Guinea savannas. The results show that model accurately predicted days to 50% anthesis and physiological maturity, leaf area index (LAI), grain yield and total dry matter (TDM) of both varieties with low RMSE and RMSEn (%) values within the range of acceptable statistics indices. Based on 31-year seasonal simulation, optimum mean grain yield of 3941 kg ha−1 for Abuja, and 4549 for Kano was simulated at N rate of 120 kg ha–1 for the early maturing variety 2009EVDT. Meanwhile in Zaria, optimum mean yield of 4173 kg ha–1 was simulated at N rate of 90 kg ha−1. For the intermediate maturing variety, IWDC2SYNF2 mean optimum yields of 5152, 5462, and 4849 kg ha−1, were simulated at N application of 120 kg ha−1 for all the locations. The probability of exceeding attainable mean grain yield of 3000 and 4000 kg ha−1 for 2009EVDT and IWDC2SYNF2, respectively would be expected in 95% of the years with application of 90 kg N ha−1 across the three sites. Following the profitability scenarios analysis, the realistic net incomes of US$ 536 ha–1 for Abuja, and US$ 657 ha−1 for Zaria were estimated at N rate of 90 kg ha−1 and at Kano site, realistic net income of US$ 720 ha–1was estimated at N rate of 120 kg ha−1 for 2009EVDT.For IWDC2SYNF2, realistic net incomes of US$ 870, 974, and 818 ha−1 were estimated at N application of 120 kg ha−1 for Abuja, Zaria, and Kano respectively. The result of this study suggests that 90 kg N ha−1 can be recommended for 2009EVDT and 120 kg N ha–1 for IWDC2SYNF2 in Abuja and Zaria while in Kano, 120 kg N ha−1 should be applied to both varieties to attain optimum yield and profit.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 366
Author(s):  
Silit Lazare ◽  
Yang Lyu ◽  
Uri Yermiyahu ◽  
Yehuda Heler ◽  
Alon Ben-Gal ◽  
...  

Quantification of actual plant consumption of nitrogen (N) is necessary to optimize fertilization efficiency and minimize contamination of earth resources. We examined the performance of fruit-bearing pomegranate trees grown in soilless media and exposed to eight N-fertigation treatments, from 5 to 200 mg N L−1. Reproductive and vegetative indices were found to be optimal when 20 to 70 mg N L−1 was supplied. Nitrogen application levels over 70 mg L−1 reduced pomegranate development and reproduction. N uptake in low-level treatments was almost 100% and decreased gradually, down to 13% in 200 mg N L−1 treatment. N usage efficiency was maximized under 20 mg N L−1, in which case 80% to 90% of added N was taken up by the trees. At high N application, its efficiency was reduced with less than 50% utilized by the trees. Leaf N increased to a plateau as a function of increasing irrigation solution N, maximizing at ~15 to 20 mg N g−1. Therefore, analysis of diagnostic leaves is not a valid method to identify excessive detrimental N. The results should be valuable in the development of efficient, sustainable, environmentally responsible protocols for N fertilization in commercial pomegranate orchards, following adaptation and validation to real soil field conditions.


2004 ◽  
Vol 84 (2) ◽  
pp. 169-176 ◽  
Author(s):  
B. L. Ma ◽  
M. Li ◽  
L. M. Dwyer ◽  
G. Stewart

Little information is available comparing agronomic performance and nitrogen use efficiency (NUE) for N application methods such as foliar spray, soil application, and ear injection in maize (Zea mays L.). The objective of this study was to investigate the effects of various N application methods on total stover dry matter, grain yield, and NUE of maize hybrids using a 15N-labeling approach. A field experiment was conducted on a Dalhousie clay loam in Ottawa and a Guelph loam in Guelph for 2 yr (1999 and 2000). Three N application methods were tested on two maize hybrids, Pioneer 3893 and Pioneer 38P06 Bt. At planting, 60 kg N ha-1 as ammonium nitrate was applied to all treatments. In addition, 6.5 kg N ha-1 and 13.5 kg N ha-1 as 15N-labeled urea were applied to either foliage (Treatment I) or soil (Treatment II) at V6 and V12 stages, respectively. In Treatment III, 20 kg N ha-1 as 15N-labeled urea was injected into space between ear and husks at silking. The results showed that compared with soil N application neither foliar spray nor injection through ear affected grain yield or stover dry matter. The NUE values ranged from 12 to 76% for N fertilizer applied at V6 a nd V12 stages, or at silking for all treatments. There was no interaction of hybrid × N application methods on any variables measured with the only exception that for soil N application, grain NUE in Pioneer 38P06 Bt was significant higher than in Pioneer 3893. The difference in total N and NUE of grain and stover between soil N application and foliar N spray was inconsistent. However, NUE was substantially higher for N injection through the ear than for foliar or soil application without differential responses between the two hybrids. Nitrogen injection through the ear at silking might have altered N redistribution within the plant and improved NUE. Hence, it can potentially enhance grain protein content. Foliar N spray is not advocated for maize production in Ontario. Key words: Maize, Zea mays, nitrogen application methods, nitrogen-15, yield, nitrogen use efficiency


Sign in / Sign up

Export Citation Format

Share Document