Effects of Nitrogen Application Rates on Dry Matter Productivity and Nitrogen Utilization of Different Type Maize Hybrids

2017 ◽  
Vol 43 (2) ◽  
pp. 263 ◽  
Author(s):  
Pei-Lu ZHOU ◽  
Hong REN ◽  
Hua QI ◽  
Ming ZHAO ◽  
Cong-Feng LI
2010 ◽  
Vol 36 (10) ◽  
pp. 1736-1742 ◽  
Author(s):  
Jun-Hua ZHANG ◽  
Jian-Li LIU ◽  
Jia-Bao ZHANG ◽  
Fu-Tao ZHAO ◽  
Ya-Nan CHENG ◽  
...  

1983 ◽  
Vol 19 (1) ◽  
pp. 33-46 ◽  
Author(s):  
J. B. Cloughley ◽  
W. J. Grice ◽  
R. T. Ellis

SUMMARYThree levels of N were imposed on mature Indian hybrid tea and green leaves were harvested according to different plucking standards at either 7 or 14-day intervals throughout the main production period. Larger rates of N and less selective plucking standards improved the fresh weight of shoots harvested but dry matter yields were less and the proportions of waste fibre in the finished product were increased. Thus, saleable black tea production was less responsive to N and plucking standard and the order of combined treatment effects was altered. Plucking interval did not affect yield but it changed the distribution of the crop in time. A 7-day interval gave the most uniform crop. These data are discussed in relation to the economics of tea production in Central Africa.


2021 ◽  
Vol 12 (01) ◽  
pp. 13-27
Author(s):  
Hanling Liang ◽  
Shiyu Gao ◽  
Jingxuan Ma ◽  
Tian Zhang ◽  
Tianyu Wang ◽  
...  

2016 ◽  
Vol 42 (1) ◽  
pp. 113 ◽  
Author(s):  
Chun-Hong WU ◽  
Qing LIU ◽  
Fan-Mei KONG ◽  
Huan LI ◽  
Yan-Xi SHI

1977 ◽  
Vol 88 (3) ◽  
pp. 711-721 ◽  
Author(s):  
P. W. Bartholomew ◽  
D. M. B. Chestnutt

SUMMARYA small-plot experiment was made to assess the influence on dry-matter output from grass of a wide range of fertilizer nitrogen and defoliation interval treatments. There were five defoliation treatments, 22, 28, 45, 75 and 112-day regrowth intervalsroughout the growing season each at six levels of nitrogen application, ranging by 300 kg increments from 0 to 1500 kg/ha/year.There was a marked interaction effect between treatments; a positive dry-matter response was maintained to a higher level of applied nitrogen with more frequent defoliation. In 2 years out of 3 maximum dry-matter yield was produced under a 75·day defoliation interval although the mean yield advantage over a 45-day defoliation system was only 11%. Mean yield of digestible dry matter appeared to reach a maximum under a 45·day defoliation interval at 600 kg N/ha but at the lower levels of N the maximum yield was reached at the longest growth interval.Seasonal response to nitrogen under the 22–day and 28–day defoliation systems measured as the increase in yield resulting from increased N at each cutting date reached its peak in July–August. Application for these short growth periods early and late in the growing season appeared to be a relatively inefficient use of nitrogen.The less frequently the sward was harvested and the higher the nitrogen application the greater was the reduction in ground cover as estimated by eye at the end of the growing season, this reached an estimated 25% reduction under 112·day defoliation at 300 kg N/ha/year.In relation to published figures nitrate content of herbage did not reach dangerous levels until nitrogen application reached levels beyond those at which maximum dry·matter yield was achieved.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 31-31
Author(s):  
Kevin R Meng ◽  
Eric Bailey ◽  
Josh Zeltwanger ◽  
Hannah Allen ◽  
Mikaela Adams ◽  
...  

Abstract Chemical seed-head suppression of endophyte infected tall fescue (Lolium arundinaceum) improves stocker cattle performance but may decrease forage yield. Spring nitrogen application increases tall fescue growth with a concomitant increase in ergot alkaloids, produced by the symbiotic endophyte Epichloë coenophiala. We hypothesized that greater amounts of nitrogen applied to tall fescue would increase forage yield and offset losses in forage production from chemical suppression of seed-heads with metsulfuron without effect on alkaloid concentration. Ninety-six steers (270 ± 20 kg) were randomly assigned to one of sixteen paddocks (1.8 ha) on April 18 and continuously grazed for 57 d. Paddocks were blocked by previous use (n = 4) and randomly assigned to one of four treatments; no metsulfuron, no nitrogen (NEGCON), metsulfuron with 0 (MET0), 67 (MET67), or 134 (MET134) kg/ha of ammonium nitrate, applied March 11. Steers grazing MET0 paddocks were removed 17 d early due to insufficient forage availability. Steer weight, forage yield, forage nutritive value and ergot alkaloids in forage samples were measured monthly. Seed-head frequency and species composition were determined in June. Metsulfuron application reduced (P < 0.01) tall fescue seed-heads by 80%. Metsulfuron decreased (P = 0.03) ergovaline but ergovaline increased (P < 0.01) at each monthly sampling across treatments. Nitrogen had no impact on ergovaline concentration (P = 0.50). Forage yield tended to be least (P = 0.07) for MET0, intermediate for NEGCON and MET67, and tended to be greatest for MET134 (P = 0.08). Steer ADG was not affected by treatment (P < 0.80). Metsulfuron decreased NDF (P=0.02) regardless of fertilization rate. Forage CP increased with fertilization (P < 0.01) and no differences were detected between NEGCON and MET0 (P = 0.45). Species composition was not impacted (P >0.07) by treatment. Metsulfuron decreased seed-head growth and ergovaline concentration in tall fescue. Additional nitrogen fertilizer ameliorated forage yield lost to metsulfuron application but did not impact steer gain.


Sign in / Sign up

Export Citation Format

Share Document