AN IMPROVED METHOD FOR BREAKING DORMANCY IN SEEDS OF SESBANIA SESBAN

2008 ◽  
Vol 44 (2) ◽  
pp. 185-195 ◽  
Author(s):  
Y. R. WANG ◽  
J. HANSON

SUMMARYDormancy in seeds of Sesbania sesban is caused by a water-impermeable seed coat (hard seeds or hardseededness). A two-phase pretreatment technique was developed for breaking seed dormancy and was validated using different accessions and seed lots. Seeds were first soaked in water at 80 °C for 8 min and prepared for the germination test. Ungerminated hard seeds at the first count (after four days incubation) during the germination test were then subjected to a second treatment by mechanically scarifying the seed coat. The effects of water temperature and variation in initial hardseededness and viability among and within accessions were also investigated. The optimum water temperature, allowing maximum seed germination without increasing the percentage of abnormal seedling/dead seeds was 80 °C. The mean percentage of hard seeds across 30 seed lots of six accessions was reduced to 26% after phase 1 and to 0% after phase 2. In addition, full germination occurred within only 10 days for treated seeds while germination in untreated seeds had reached only 48% after 14 days. Significant differences existed among the seed lots within the accessions (p > 0.05) for the percentage of initial hard seed and for the effects of treatments on breaking seed dormancy. The two-phase technique developed was validated using over 1000 seed lots of S. sesban, and it was found to be a rapid and cost-effective method for breaking hard seed dormancy with potential for wider use for hard-seeded legumes.

2016 ◽  
Vol 36 (87) ◽  
pp. 195
Author(s):  
Adriano Gonçalves Pereira ◽  
Eniel David Cruz ◽  
Hellen Síglia Demétrio Barros

Seed dormancy is a phenomenon observed in several tropical species. This condition causes low and non-uniform germination. The present study was designed to identify an efficient method of breaking seed dormancy in Stryphnodendron pulcherrimum. Seeds of four mother plants were subjected to the following treatments: immersion in sulfuric acid for 2, 4, 6, 8, 10 and 12 min and scarification on 150-grit sandpaper. Seeds were sown on substrate containing sand and sawdust (1:1). It was evaluate the days to onset seedlings emergence, seedlings emergence (SE), emergence speed index (ESI), germination (G), hard seeds (HS), dead seeds (DS), dormant seeds (DMS), abnormal seedlings (AS) and dry mass of aerial part (DMAP) and roots (DMR). The experimental design was completely randomized with four replications of 25 seeds for each treatment. Data were subjected to analysis of variance and means compared by Tukey's test (p < 0.05). Significant differences among treatments were observed for ESI, SE, G, HS, DMAP and DMR. Highest HS was observed in control treatment (85%). Highest G was observed in seeds scarified with sulfuric acid for 10 min (82%) and 12 min (74%). These treatments also showed highest ESI, DMAP and DMR, indicating that these scarification treatments were the most efficient in overcoming dormancy.


2019 ◽  
Vol 79 (01S) ◽  
Author(s):  
Debashis Paul ◽  
S. K. Chakrabarty ◽  
H. K. Dikshit ◽  
S. K. Jha ◽  
G. Chawla ◽  
...  

Presence of hard seeds in seed lots reduces the seedling emergence percentage in field leading to non-uniform, lowered plant population and uneven maturity. Seed hardness, characterized by no water imbibition, is controlled by both genetic and environmental conditions. To estimate the broad sense heritability (H2) of hardseededness, 20 mungbean genotypes with >22% hard seeds were grown in four different environments (Env.) viz., high average temperature and high soil moisture (Env. 1), mild temperature and low soil moisture (Env.2), mild temperature and high soil moisture (Env. 3) and low average temperature and low soil moisture (Env.4). The average per cent hard seed in seed lots was 5.42, 28.7, 19.4 and 33.9 under Env.1, Env.2, Env.3 and Env.4, respectively. The H2 estimate of hardseededness under Env.1, Env.2, Env.3 and Env.4 was 0.67, 0.97, 0.96 and 0.98, respectively. Decreasing soil moisture, low temperature and delayed harvest increased occurrence of per cent hard seed. The force required in Texture Analysis Machine to break seeds produced under Env.1 ranged from 9.23 to 33.31 Newton while the same ranged from 39.51 to 71.53 Newton in seeds produced under Env.4. The Scanning Electron Microscope images indicated that the seeds produced under low average temperature and soil moisture had a presence of compact outer cell layer with low surface deposition and depression on the seed coat of seeds produced in Env.1 and there is existence of loose cells and cracks in the seed coat with high depression and surface deposition in the seeds produced under Env.4. A lower heritability of 0.67 for hardseededness in high temperature and soil moisture condition suggested that the character is influenced by stress conditions. Growing of genotypes under low temperature and moisture condition is suggested for screening of genotypes for hardseededness in mungbean.


2020 ◽  
Vol 48 (2) ◽  
pp. 159-165
Author(s):  
Ganesha S. Liyanage ◽  
Catherine A. Offord ◽  
Karen D. Sommerville

We tested for dormancy in three species of Acronychia (Rutaceae) occurring in the rainforest in eastern Australia, A. imperforata, A. laevis and A. oblongifolia, by incubating fresh intact seeds on 0.8% water agar for one month at 25/10°C. Four different techniques were then tested for their effect on dormancy: (i) incubation of intact seeds on agar incorporating gibberellic acid (GA3); (ii) seed coat removal (decoating); (iii) scarification near the radicle emergence point (scarification-emergence point); and (iv) scarification opposite the radicle emergence point (scarification-back). Imbibition tests were performed to determine whether dormancy was due to an impermeable seed coat. Germination differed among treatments, but all three species showed a similar pattern. Intact seeds showed < 6% germination after one month indicating the presence of dormancy. Highest germination (> 65%) was observed following scarification-emergence point treatment. Seed coat removal also resulted in increased germination (40-47%), in comparison with intact seeds, but GA3 and scarification-back treatments did not (< 12%). Though the seedcoats of all species were permeable, increased germination responses to decoating and scarification-emergence point treatments suggest scarification is required to clear the radicle emergence point. This may be a useful dormancy-breaking technique for Acronychia spp. and may be suitable for related Rutaceae species.


1998 ◽  
Vol 76 (4) ◽  
pp. 575-586 ◽  
Author(s):  
Hua Chen ◽  
M A Maun

Growth chamber studies were conducted to examine seed dormancy and germination requirements of Pitcher's thistle (Cirsium pitcheri (Torr. ex Eaton) Torr. & Gray), a threatened species endemic to the shoreline sand dunes of the Great Lakes. We determined the effects of different environmental regimes on breaking seed dormancy of this monocarpic perennial. The data showed that seeds of C. pitcheri possessed innate dormancy that was caused by a hard seed coat as well as inhibitory compounds within the seed. Seed germination requirements were very specific. Exposure of seeds to different temperatures and photoperiods in a growth chamber had little effect on breaking seed dormancy unless the seeds had been pretreated. Pretreatment of seeds by cold stratification and its duration, scarification by sand paper or sulphuric acid, and application of gibberellic acid were also not very effective for breaking dormancy of C. pitcheri. High germination was obtained only when seeds were pretreated either by surgically removing the seed coat or by nicking the seed on the radicle or cotyledonary end. After this pretreatment seeds germinated over a temperature range of 15-30°C, but the highest proportion of seeds germinated when temperatures were above 20°C. Under natural conditions, germination of C. pitcheri seeds occurs in spring after they have overwintered and experienced the pretreatment of stratification and scarification through freezing and thawing of the substrate. Aqueous extract of C. pitcheri seeds had a strong inhibitory effect on germination of Oenothera biennis L. seeds indicating an allelopathic chemical in the seed. There was no relationship between the seed size of C. pitcheri and the germinability of seeds.Key words: Cirsium pitcheri, threatened species, seed dormancy, seed germination, scarification, stratification, nicking of seeds.


1996 ◽  
Vol 10 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Philip Westra ◽  
Calvin H. Pearson ◽  
Randal Ristau ◽  
Frank Schweissing

This study was conducted to gain insight into the soil seedbank dynamics of Venice mallow in two irrigated Colorado soils. Venice mallow plants produced an average of 3100 seeds per plant under noncompetitive irrigated conditions. Venice mallow seeds collected from three regions of Colorado and stored at 25 C averaged 95% dormancy and less than 4% nonviable seeds 6 mo after harvesting. Percent nonviable seeds in soil remained relatively constant over 2 yr. Most seeds germinated within the first 3 mo after burial in the first crop production year. Seed dormancy decreased to an average of 40% after 3 mo of burial in cultivated soil at Fruita and Rocky Ford, and thereafter remained relatively constant for 21 mo. Fruita seeds underwent lessin situgermination than seeds from Greeley or Rocky Ford. Innate seed dormancy was lower at Fruita (27%) than at Rocky Ford (39%). Enforced dormancy remained constant over a 21-mo period and was similar for both locations (32%). Seeds buried for 2 yr at Fruita underwent greaterin situgermination (42%) than at Rocky Ford (27%). At Fruita, the level of enforced dormancy was higher and the level of innate dormancy lower at the 20-cm than the 2-cm depths. Venice mallow seed dormancy likely is due to an impermeable hard seed coat.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 450F-451
Author(s):  
Dianne Oakley ◽  
Julie Laufmann ◽  
James Klett ◽  
Harrison Hughes

Propagation of Winecups [Callirhoe involucrata (Torrey & A. Gray)] for use as a landscape ornamental has been impeded by a lack of understanding of the seed dormancy and a practical method for overcoming it. As with many members of the Malvaceae family, C. involucrata produces hard seed. In the populations tested, it accounted for 90% of an average sample. Impermeability, however, is not the only limiting factor to germination. Three disparate populations of seed, representing two different collection years have been investigated using moist pre-chilling, boiling water, leaching, gibberellic acid, hydrogen peroxide and mechanical and chemical scarification methods. Scarifying in concentrated sulfuric acid stimulates germination of some seed fractions and causes embryonic damage in others, suggesting variation in seed coat thickness. Similar results were obtained using a pressurized air-scarifier; the hard seed coat of some seed fractions were precisely scarified while others were physically damaged using the same psi/time treatment. Placing seed in boiling water increases germination from 4%, 7%, and 18 % to 23%, 25%, and 77% in the three populations, respectively. Leaching for 24/48 h in cold (18 °C) aerated water or for 24 h in warm (40 °C) aerated water showed only a minor increase over the control. Pre-chilling at 5 °C for 30, 60, and 90 days showed no improvement over the control. Gibberellic acid-soaked blotters improved germination at 400 ppm to 20%, 10%, and 41%; at 500 ppm germination was reduced. Soaking seed for 24 h in a 3% concentration of hydrogen peroxide did not effect germination; at a 30% concentration germination was reduced. The considerable variation in seed dormancy expression may be a function of differences in environmental factors during development or seed age.


2020 ◽  
Author(s):  
Qing Jin ◽  
Jinfeng Tong ◽  
Wenwu Zhang ◽  
Long Xia ◽  
Xiaoyun Zhu ◽  
...  

Abstract Background: The seeds of Polygonatum cyrtonema Hua have dormancy phenomenon. Previous studies have shown that sand storage factors effects of the seed dormancy of P. cyrtonema Hua seeds and enhance the seed germination process. Subsequently, metabolic activities and different changes during the sand storage and germination process of P. cyrtonema Hua seed has not been heavily researched.Results: In this study the changes in the metabolites of P. cyrtonema Hua seeds at different sand storage times and germination stages, we used untargeted metabolomics to determine them. Most of the sugar and glycoside contents in seed coat increased after 30 d on the other hand, in peeled seeds increased at 30 d and decreased at 60 d after sand storage treatment. The content of proline and benzoic acid decreased in the seed coat after sand storage. PCA, OPLS-DA and HCA showed that the contents of most metabolites increased after 7 d and decreased after 14 d of seed germination. The process of 7 d to 14 d was the key stage of seed germination of P. cyrtonema Hua. Differential metabolic pathway analysis showed that seed germination was controlled by multiple metabolic pathways. Metabolic correlation revealed the interdependence between seed germination metabolites and metabolic pathways. Conclusion: Sand storage can significantly increase the rate of seed germination and play a vital role in seed dormancy of P. cyrtonema Hua. There was inherent differences in metabolites during different storage time and germination stages in P. cyrtonema Hua. Our work provides a first glimpse of the metabolome in seed germination of P. cyrtonema Hua, and provides a valuable informations for revealing the mechanism of breaking seed dormancy.


2016 ◽  
Vol 37 (2) ◽  
pp. 693
Author(s):  
Camila Aquino Tomaz ◽  
Cibele Chalita Martins ◽  
Givanildo Zildo da Silva ◽  
Roberval Daiton Vieira

The period of 21 days suggested by the Brazilian Rules for Seed Testing for the germination test of B. humidicola seeds seems too long for seed producing companies and laboratories since they depend on the results for decisions concerning the storage or the commercialization of the seed lots. So, the objective of this work was to evaluate the possibility of getting germination results of B. humidicola seeds in a shorter period. The procedures consisted in submitting the seeds to a dormancy breaking treatment and to alternating temperatures during the germination test. Seed samples of nineteen S1 and S2 seed lots were submitted to the following treatments: moistening the germination substratum with 1) deionized water (check treatment), 2) a KNO3 (0.2%) solution, and 3) scarifying the seeds with sulfuric acid for 10 minutes. The germination test was conducted under the conditions of 1) alternating temperatures of 20 and 35 °C and 2) alternating temperatures of 15 and 35 °C both with 8 hours of light. Normal seedlings were evaluated in daily countings. The results showed that the germination test of B. humidicola seeds may be carried out under alternating temperatures of 15 and 35 °C without breaking seed dormancy with a final evaluation of the germination 10 days after the sowing of the seeds.


1998 ◽  
Vol 8 (4) ◽  
pp. 501-512 ◽  
Author(s):  
Jerry M. Baskin ◽  
Xiaoying Nan ◽  
Carol C. Baskin

AbstractSeed dormancy and germination ofSenna marilandicaandS. obtusifoliawere compared in greenhouse and laboratory studies. About 90% of theS. obtusifoliaseeds were green and had hard seed coat dormancy, whereas the other 10% were brown and nondormant. Seed-colour morphs did not occur inS. marilandica, and nearly 100% of the seeds had hard seed coat dormancy. Seeds ofS. obtusifoliawere significantly heavier than those ofS. marilandica. Mechanical scarification was very effective in overcoming dormancy in seeds of both species. However, concentrated sulfuric acid, absolute ethanol and boiling water were less effective in breaking dormancy in seeds ofS. marilandicathan in those ofS. obtusifolia. Further, incubating seeds at 30/15 to 40/25°C and dry-heat treatments at 80–100°C were ineffective in breaking dormancy inS. marilandica, but significantly increased germination percentages inS. obtusifolia. In neither species were simulated daily/seasonal temperature shifts effective in breaking dormancy. Scarified seeds of both species germinated over a wide range of temperatures in both light and darkness. Under near-natural temperature conditions, seeds ofS. marilandicagerminated in spring only, whereas those ofS. obtusifoliaemerged in late spring and throughout summer. Both species can form a long-lived seed bank. Dormancy break by high field temperatures in seeds ofS. obtusifoliaallows this species to germinate throughout the warm growing season and thus contributes to its success as a weed in arable crops.


2020 ◽  
Vol 100 (6) ◽  
pp. 666-673
Author(s):  
Yunpeng Gao ◽  
Mingwei Zhu ◽  
Qiuyue Ma ◽  
Shuxian Li

The seeds of Cercis chinensis Bunge are important for reproduction and propagation, but strong dormancy controls their germination. To elucidate the causes of seed dormancy in C. chinensis, we investigated the permeability of the hard seed coat and the contribution of the endosperm to physical dormancy, and we examined the effect of extracts from the seed coat and endosperm. In addition, the effectiveness of scarification methods to break seed dormancy was compared. Cercis chinensis seeds exhibited physical and physiological dormancy. The hard seed coat played an important role in limiting water uptake, and the endosperm acted as a physical barrier that restricted embryo development in imbibed seeds. Germination percentage of Chinese cabbage [Brassica rapa subsp. chinensis (L.) Hanelt] seeds was reduced from 98% (control) to 28.3% and 56.7% with a seed-coat extract and an endosperm extract, respectively. This demonstrated that both the seed coat and endosperm contained endogenous inhibitors, but the seed-coat extract resulted in stronger inhibition. Mechanical scarification, thermal scarification, and chemical scarification had positive effects on C. chinensis seed germination. Soaking non-scarified seeds in gibberellic acid (GA3) solution did not promote germination; however, treatment with exogenous GA3 following scarification significantly improved germination. The optimal method for promoting C. chinensis seed germination was soaking scarified seeds in 500 mg·L−1 GA3 for 24 h followed by cold stratification at 5 °C for 2 mo.


Sign in / Sign up

Export Citation Format

Share Document