scholarly journals Some sampling properties of selectively neutral alleles

1979 ◽  
Vol 34 (3) ◽  
pp. 253-267 ◽  
Author(s):  
Ranajit Chakraborty ◽  
Paul A. Fuerst

SUMMARYSome sampling properties related with the mean and variance of the number of alleles and single locus heterozygosity are derived to study the effect of variations in mutation rate of selectively neutral alleles. The correlation between single locus heterozygosity and the number of alleles is also derived. Monte Carlo simulation is conducted to examine the effect of stepwise mutations. The relevance of these results in estimating the population parameter, 4Neν, is discussed in connexion with neutralist-selectionist controversy over the maintenance of genetic variability in natural populations.

2012 ◽  
Vol 155-156 ◽  
pp. 570-573
Author(s):  
Wen Hui Mo

This paper proposes a method of calculating reliability using perturbation stochastic finite element. The mean and variance of the stress can be computed by the perturbation stochastic finite element. Computer program is used to generate samples of stress and strength. If the stress is greater than the strength, the structure will fail. The Monte Carlo simulation is proposed to compute structural reliability. Reliability calculation using the Monte Carlo simulation is developed. A numerical example demonstrates the proposed method is feasible.


2012 ◽  
Vol 155-156 ◽  
pp. 47-50
Author(s):  
Wen Hui Mo

This paper proposes a method of calculating dynamic reliability using perturbation stochastic finite element. Dynamic analysis of perturbation stochastic finite element is introduced and the mean and variance of the stress can be obtained. Samples of stress and strength are generated by computer program. The Monte Carlo simulation is proposed to compute dynamic reliability of structure. Dynamic reliability of structure is computed by the stress-strength interference model. The proposed methods are demonstrated by a numerical example of axle.


2013 ◽  
Vol 740-742 ◽  
pp. 393-396
Author(s):  
Maxim N. Lubov ◽  
Jörg Pezoldt ◽  
Yuri V. Trushin

The influence of attractive and repulsive impurities on the nucleation process of the SiC clusters on Si(100) surface was investigated. Kinetic Monte Carlo simulations of the SiC clusters growth show that that increase of the impurity concentration (both attractive and repulsive) leads to decrease of the mean cluster size and rise of the nucleation density of the clusters.


Genetics ◽  
1981 ◽  
Vol 98 (2) ◽  
pp. 441-459 ◽  
Author(s):  
Takeo Maruyama ◽  
Masatoshi Nei

ABSTRACT Mathematical properties of the overdominance model with mutation and random genetic drift are studied by using the method of stochastic differential equations (Itô and McKean 1974). It is shown that overdominant selection is very powerful in increasing the mean heterozygosity as compared with neutral mutations, and if 2Ns (N = effective population size; s = selective disadvantage for homozygotes) is larger than 10, a very low mutation rate is sufficient to explain the observed level of allozyme polymorphism. The distribution of heterozygosity for overdominant genes is considerably different from that of neutral mutations, and if the ratio of selection coefficient (s) to mutation rate (ν) is large and the mean heterozygosity (h) is lower than 0.2, single-locus heterozygosity is either approximately 0 or 0.5. If h increases further, however, heterozygosity shows a multiple-peak distribution. Reflecting this type of distribution, the relationship between the mean and variance of heterozygosity is considerably different from that for neutral genes. When s/v is large, the proportion of polymorphic loci increases approximately linearly with mean heterozygosity. The distribution of allele frequencies is also drastically different from that of neutral genes, and generally shows a peak at the intermediate gene frequency. Implications of these results on the maintenance of allozyme polymorphism are discussed.


2020 ◽  
Vol 3 (3) ◽  
pp. 533
Author(s):  
Josua Guntur Putra ◽  
Jane Sekarsari

One of the keys to success in construction execution is timeliness. In fact, construction is often late than originally planned. It’s caused by project scheduling uncertainty. Deterministic scheduling methods use data from previous projects to determine work duration. However, not every project has same work duration. The PERT method provides a probabilistic approach that can overcome these uncertainties, but it doesn’t account for the increase in duration due to parallel activities. In 2017, the PERT method was developed into the M-PERT method. The purpose of this study is to compare the mean duration and standard deviation of the overall project between PERT and M-PERT methods and compare them in Monte Carlo simulation. The research method used is to calculate the mean duration of the project with the PERT, M-PERT, and Monte Carlo simulation. The study was applied to a three-story building project. From the results of the study, the standard deviation obtained was 5.079 for the M-PERT method, 8.915 for the PERT method, and 5.25 for the Monte Carlo simulation. These results show the M-PERT method can provide closer results to computer simulation result than the PERT method. Small standard deviation value indicates the M-PERT method gives more accurate results.ABSTRAKSalah satu kunci keberhasilan dalam suatu pelaksanaan konstruksi adalah ketepatan waktu. Kenyataannya, pelaksanaan konstruksi sering mengalami keterlambatan waktu dari yang direncanakan. Hal ini disebabkan oleh ketidakpastian dalam merencanakan penjadwalan proyek. Metode penjadwalan yang bersifat deterministik menggunakan data dari proyek sebelumnya untuk menentukan durasi pekerjaan. Akan tetapi, tidak setiap proyek memiliki durasi pekerjaan yang sama. Metode PERT memberikan pendekatan probabilistik yang dapat mengatasi ketidakpastian tersebut, tetapi metode ini tidak memperhitungkan pertambahan durasi akibat adanya kegiatan yang berbentuk paralel. Pada tahun 2017, metode PERT dikembangkan menjadi metode M-PERT. Tujuan dari penelitian ini adalah membandingkan mean durasi dan standar deviasi proyek secara keseluruhan antara metode PERT dan M-PERT dan membandingkan kedua metode tersebut dalam simulasi Monte Carlo. Metode penelitian yang dilakukan adalah menghitung mean durasi proyek dengan metode PERT, M-PERT, dan simulasi Monte Carlo. Penelitian diterapkan pada proyek gedung bertingkat tiga. Dari hasil penelitian, nilai standar deviasi diperoleh sebesar 5,079 untuk metode M-PERT, 8,915 untuk metode PERT, dan 5,25 untuk simulasi Monte Carlo. Hasil ini menunjukan metode M-PERT dapat memberikan hasil yang lebih mendekati hasil simulasi komputer daripada metode PERT. Nilai standar deviasi yang kecil menunjukan metode M-PERT memberikan hasil yang lebih akurat.


2020 ◽  
Vol 5 (4) ◽  
pp. 64
Author(s):  
Themis Matsoukas

We formulate the statistics of the discrete multicomponent fragmentation event using a methodology borrowed from statistical mechanics. We generate the ensemble of all feasible distributions that can be formed when a single integer multicomponent mass is broken into fixed number of fragments and calculate the combinatorial multiplicity of all distributions in the set. We define random fragmentation by the condition that the probability of distribution be proportional to its multiplicity, and obtain the partition function and the mean distribution in closed form. We then introduce a functional that biases the probability of distribution to produce in a systematic manner fragment distributions that deviate to any arbitrary degree from the random case. We corroborate the results of the theory by Monte Carlo simulation, and demonstrate examples in which components in sieve cuts of the fragment distribution undergo preferential mixing or segregation relative to the parent particle.


2013 ◽  
Vol 869-870 ◽  
pp. 581-592
Author(s):  
Mauro Arnesano ◽  
Antonio Paolo Carlucci ◽  
Giovanni D'Oria ◽  
Alessio Guadalupi ◽  
Domenico Laforgia

The energy planning based on Mean - Variance theory, guides the investors in investment decisions, trying to maximize the return and minimize the risk of investment. However, this theory is based on strong hypotheses and, in addition, input data are often affected by estimation errors. Moreover, this theory determines poor diversification increasing return and risk of the portfolio, and strong variability of the outputs when inputs are varied.In the first part of the paper, the Mean - Variance theory was applied to the energy generation in Italy; in particular, the analysis was on the actual energy mix, but also assuming the use of nuclear technology and taking into account verisimilar improvement, of technologies in the future.On the other hand, in the second part of the paper, a methodology has been applied in order to limit the problems of Mean-Variance theory applied to the energy mix settlement. In particular, the input variables have been calculated using Monte Carlo simulation, in order to reduce the estimation error, and the Resampled EfficiencyTMtechnique has been applied in order to calculate the resulting new “average” efficient frontier. This methodology has been applied either not limiting or limiting the minimum and maximum percentage for every energy generation technology, in order to simulate constraints due, for example, to the technological characteristics of the plant, the availability of the sources and eventually to norms, to the territorial characteristics and to the socio-political choices. The application of Mean - Variance theory allowed to obtain energy portfolio, alternative to the actual, characterized by higher values of expected returns an lower values of risk.It was also shown that the application of the Resampled EfficiencyTMtechnique with data originated with the Monte Carlo simulation effectively tackles the problems of Mean - Variance theory; in this way, the decision maker is helped in making decisions in the energy system policy and development.Thanks to this approach, applied in particular to the Italian energy contest, it was also possible to evaluate the effectiveness of the introduced modifications to the Italian actual energy mix to achieve the 2020 European Energy Directive targets in particular concerning the reduction of CO2levels.


1998 ◽  
Vol 14 (1) ◽  
pp. 165-188 ◽  
Author(s):  
Yutaka Nakamura ◽  
Tsuneyoshi Nakamura

A direct procedure is presented for generating a response spectrum for an arbitrary nonexceedance probability from a prescribed design mean response spectrum. An amplification factor is derived to estimate the maximum response values of an MDOF system for a nonexceedance probability from the mean maximum ones. An efficient stiffness design method for a shear building is developed with the use of its fundamental frequency and translational eigenvector as parameters for adjusting the nonexceedance probability of the seismic drifts to the specified value. The validity and accuracy of the proposed method are demonstrated by a Monte Carlo simulation together with time-history analyses.


Genetics ◽  
1976 ◽  
Vol 84 (2) ◽  
pp. 385-393
Author(s):  
Ranajit Chakraborty ◽  
Masatoshi Nei

ABSTRACT The amount of hidden genetic variability within electromorphs in finite populations is studied by using the infinite site model and stepwise mutation model simultaneously. A formula is developed for the bivariate probability generating function for the number of codon differences and the number of electromorph state differences between two randomly chosen cistrons. Using this formula, the distribution as well as the mean and variance of the number of codon differences between two identical or nonidentical electromorphs are studied. The distribution of the number of codon differences between two randomly chosen identical electromorphs is similar to the geometric distribution but more leptokurtic. Studies are also made on the number of codon differences between two electromorphs chosen at random one from each of two populations which have been separated for an arbitrary number of generations. It is shown that the amount of hidden genetic variability is very large if the product of effective population size and mutation rate is large.


2018 ◽  
Vol 17 (2) ◽  
pp. 157
Author(s):  
S. UTAMI ◽  
I W. MANGKU ◽  
I G. P. PURNABA

<em>Performances of estimators for the mean and variance functions of a compound Poisson process having intensity obtained as an exponential of linear function are investigated using Monte Carlo simulations. The intensity function of this process is assumed to be </em>𝑒𝑥𝑝(𝛼+𝛽𝑠) <em>with </em>0&lt;𝛽&lt;<em>∞</em>, <em>where </em>𝛽 <em>is assumed to be known. In [8], estimators of the mean and variance functions of this process have been constructed and have been proved to be unbiased, weakly and strongly consistent. The objectives of this research are to check distributions of these estimators using Monte Carlo simulation and to check the convergence to </em>1−𝛼 <em>of the probabilities that the parameters are contained in the confidence intervals constructed in [11]. Results of the research are as follows. Distribution of estimators for the mean and variance functions are approximately normal. For a given significance level </em>𝛼<em>, the larger the size of observation interval, the closer the probabilities that the parameters are contained in the confidence intervals to </em>1−𝛼<em>.</em>


Sign in / Sign up

Export Citation Format

Share Document