Effects of time and rate of nitrogen application on tillering, ‘sharp eyespot’ (Rhizoctonia solani) and yield in winter wheat

1969 ◽  
Vol 72 (2) ◽  
pp. 273-280 ◽  
Author(s):  
P. M. Bremner

SUMMARYVarious rates of nitrogen fertilizer were applied in early and late spring to two densities of winter wheat to examine their effects on grain yield and its components. A severe attack of ‘sharp eyespot’ (Rhizoctonia solani) allowed an assessment of the effects of the treatments on the incidence of this disease.The disease level was much higher where nitrogen was applied early and increased with increase in nitrogen up to 120 units applied; it was slightly higher at the higher density. Grain yield was slightly greater where nitrogen was applied late; early application gave more, but smaller, ears. Main shoots produced at least 70% of the grain in the high-density plots but less than 50% at the low density. Tillers appearing after early March contributed little to grain yield at the higher density but substantially at the lower one. Tillers produced after early April died without heading. In general, the chances of survival of a tiller diminished with delay in the time of its appearance, but some early tillers died while later ones survived and produced ears. The chances of survival of later tillers were greater at low density and high rates of nitrogen.

1984 ◽  
Vol 103 (3) ◽  
pp. 595-611 ◽  
Author(s):  
R. J. Darby ◽  
F. V. Widdowson ◽  
M. V. Hewitt

SummaryFrom 1980 to 1982 fungicide and aphioide sprays were tested in factorial combination with four amounts of nitrogen fertilizer, applied in one or two dressings to winter wheat, on three contrasting clay soils. These experiments were at Hexton (Burwell series) in Hertfordshire, at Billington (Evesham series) and at Maulden (Hanslope series) in Bedfordshire, following a 2–year break, an all-cereal rotation, and continuous wheat respectively. The nitrogen dressings were calculated after taking into account mineral N in the soil. In 1981 and 1982 soil density was measured by penetrometer. This showed compaction in soil at Maulden 28 cm deep which caused waterlogging in spring; this delayed growth which was not made good later.At Hexton a small seed rate was used; plant losses during winter were proportionally larger than elsewhere. At Billington, the maximum number of stems occurred in March and elsewhere in April. Despite these differences in seed rate and number of plants, number of ears varied little, and each year the wheat at Hexton accumulated dry matter most rapidly. The growth rate there ranged from 20·0 to 21·8 g/m2/day during the linear growth phase as compared with 14·4 to 16·6 g/m2/day at the other two sites. Giving N in two dressings rather than in one increased dry-matter yield at all sites in May, but later this benefit remained static and so became a smaller proportion of the total. Fungicides increased post-anthesis dry-matter yield by 0·75 t/ha, most of which was incorporated in the grain.Mean grain yields from 1980 to 1982 where nitrogen fertilizer was given were 9·86 t/ha at Hexton, 7·88 t/ha at Billington and 6–91 t/ha at Maulden. Additional nitrogen fertilizer always increased grain yield when fungicides and aphicides were given, but not where they were not. Grain yields in excess of 10 t/ha were achieved with numbers of ears ranging between 360 and 435/m2. The components of yield showed that grain yield was related to the number of grains per ear and 1000·grain weight, but not number of ears. Grain weight was increased by 3·1 mg by the fungicides.The fungicides controlled the diseases eyespot (Pseudocercosporella herpolrichoides), Septoria spp. and yellow and brown rust (Pucdnia striiformis and P. recondita) where they occurred, but even where these diseases were absent or at very low levels the fungicides significantly increased grain yield. At Billington and Maulden take-all (Qaeumannomyces graminis) infected between 44 and 90% of the plants and sharp eyespot (Rhizoctonia cerealis) infected from < 1 to 20% of the stems because the wheat followed cereals. Yields of straw behind the combine-harvester were from 50 to 70% of those obtained from sheaves cut at ground level.


1988 ◽  
Vol 110 (1) ◽  
pp. 119-140 ◽  
Author(s):  
G. N. Thorne ◽  
P. J. Welbank ◽  
F. V. Widdowson ◽  
A. Penny ◽  
A. D. Todd ◽  
...  

SummaryWinter wheat grown following potatoes on a sandy loam at Woburn in 1978–9, 1980–1 and 1981–2 was compared with that on a clay loam at Rothamsted in 1978–9 and 1980–1, and on a silty clay (alluvium) at Woburn in 1981–2. The cultivar was Hustler in the harvest years 1979 and 1981 and Avalon in 1982. On each soil in each year multifactorial experiments tested effects of combinations of six factors, each at two levels.The best 4-plot mean grain yield ranged from 89 to 11·1 t/ha during the 3 years; it was smaller on the sandy soil than on the clay soil in 1979, but larger on sand than on the clay in 1981 and 1982. Until anthesis the number of shoots, dry weight and N content of the wheat giving these best yields were less on sand than on clay. Unlike grain weight, straw weight was always less on sand.Sowing in mid-September instead of mid-October increased grain yield on clay in each year (by 0·4·0·7 t/ha) and increased yield on sand only in 1981 (by 1·6 t/ha). Early sowing always increased dry weight, leaf area, number of shoots and N uptake until May. The benefits were always greater on clay than on sand immediately before N fertilizer was applied in the spring and usually lessened later on both soils.Aldicarb as an autumn pesticide increased grain yield of early-sown wheat on both soils in 1981 by lessening infection with barley yellow dwarf virus. Aldicarb increased yield on clay in 1982; it also decreased the number of plant parasitic nematodes.Wheat on sand was more responsive to nitrogen in division, timing and amount than was wheat on clay. In 1979 yield of wheat on sand was increased by dividing spring N between March, April and May, instead of giving it all in April, and in 1982 by giving winter N early in February. In 1981 division and timing on sand interacted with sowing date. Yield of early-sown wheat given N late, i.e. in March, April and May, exceeded that given N early, i.e. in February, March and May, by 1·4 t/ha; single dressings given all in March or all in April also yielded less than the late divided dressing. Yield of later-sown wheat given all the N in April was at least 1·2 t/ha less than with all N given in March or with divided N. In all years treatments that increased yield usually also increased N uptake. Grain yield on clay was never affected by division or timing of spring N or by application of winter N. This was despite the fact that all treatments that involved a delay in the application of N depressed growth and N uptake in spring on both sand and clay. The mean advantage in N uptake following early application of spring N eventually reversed on both soils, so that uptake at maturity was greater from late than from early application. Increasing the amount of N given in spring from the estimated requirement for 9 t/ha grain yield to that for 12 t/ha increased yield in 1982, especially on sand. The larger amount of N always increased the number of ears but often decreased the number of grains per ear and the size of individual grains.Irrigation increased grain yield only on the sandy soil, by 1·1 t/ha in 1979 and by 07 t/ha in 1981 and 1982. The component responsible was dry weight per grain in 1979 and 1982, when soil moisture deficits reaching maximum values of 136 and 110 mm respectively in the 2 years developed after anthesis; the component responsible was number of ears/m2 in 1982 when the maximum deficit of 76 mm occurred earlier, in late May.


2017 ◽  
Vol 9 (4) ◽  
pp. 236
Author(s):  
Abdulla A. Mohamed Muflahi ◽  
Ahmed Saleh Basuaid

A field experiment was carried out at El-Kod Agricultural Research Station, Abyan Delta, Abyan Governorate during the seasons 2014 and 2015 in soil sandy silt to assess four levels of nitrogen fertilizers (0, 55, 110 and 165 kg N/ha) utilizing urea fertilizer (46% N) on some crop characteristics and efficiency of nitrogen application on two local cultivars of sorghum (Sorghum bicolor L. Moench). Split plot design was applied in four replicates. Fertilizer levels were distributed in main plots whereas, the cultivars in subplots. The results revealed significant differences between cultivars Benny and Saif in all characteristics during the two seasons. Cultivar Benny was significantly superior to cultivar Saif in all crop characteristics, except the length of spike which was significantly superior in Saif cultivar compared to cultivar Benny in both seasons. The increase in nitrogen level led to significant increase in all parameters of crop growth under study in both seasons, where the highest dose of nitrogen (165 kg N/ha) gave highest grain yield (3013 and 3201 kg/ha) in both seasons respectively, while the efficiency of nitrogen utilization declined with increased level of nitrogen application and highest value in nitrogen efficiency (12.78 kg grain/kg N). The interaction between cultivars and nitrogen fertilizer showed significant differences in terms of all studied parameters during both seasons. The cultivar Benny responded to high level of nitrogen (165 kg N/ha) and gave high grain yield (3640 and 3305 kg/ha) in both seasons respectively. The results yielded significant effect for efficiency of nitrogen application on grain yield between the cultivars, the levels of fertilizers and their interaction in the first season whereas, no significant differences were detected in the second season.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhen Zhang ◽  
Yongli Zhang ◽  
Yu Shi ◽  
Zhenwen Yu

AbstractThis study aims to investigate optimization of the basal-top-dressing nitrogen ratio for improving winter wheat grain yield, nitrogen use efficiency, water use efficiency and physiological parameters under supplemental irrigation. A water-saving irrigation (SI) regime was established and sufficient irrigation (UI) was used as a control condition. The split-nitrogen regimes used were based on a identical total nitrogen application rate of 240 kg ha−1 but were split in four different proportions between sowing and the jointing stage; i.e. 10:0 (N1), 7:3 (N2), 5:5 (N3) and 3:7 (N4). Compared with the N1, N2 and N4 treatments, N3 treatment increased grain yield, nitrogen and water use efficiencies by 5.27–17.75%, 5.68–18.78% and 5.65–31.02%, respectively, in both years. The yield advantage obtained with the optimized split-nitrogen fertilizer application may be attributable to greater flag leaf photosynthetic capacity and grain-filling capacity. Furthermore, the N3 treatment maintained the highest nitrogen and water use efficiencies. Moreover, we observed that water use efficiency of SI compared with UI increased by 9.75% in 2016 and 10.79% in 2017, respectively. It can be concluded that SI along with a 5:5 basal-top-dressing nitrogen ratio should be considered as an optimal fertigation strategy for both high grain yield and efficiency in winter wheat.


1984 ◽  
Vol 24 (125) ◽  
pp. 250 ◽  
Author(s):  
PE Bacon ◽  
DP Heenan

The growth, nitrogen use and yield of rice cv. lnga were examined in three experiments in 1978, 1979 and 1980. In each experiment, one rate of nitrogen was applied at six different times between permanent flood and three weeks after panicle initiation. Application of 50 kg N/ha in 1978 and 70 kg N/ha in 1980 at permanent flood increased yield. A higher rate (100 kg N/ha) at permanent flood in 1979 greatly increased vegetative growth but had little effect on grain yield. The grain yield response to 100 kg N/ha in 1979 significantly increased when application was delayed until panicle initiation. Nitrogen topdressing up to 14 d after panicle initiation resulted in an increased percentage of filled florets per panicle and heavier grains compared with application 14-21 d before panicle initiation. Delaying nitrogen application till 2 1 d after panicle initiation resulted in lower numbers of florets per panicle and consequently reduced yield.


1978 ◽  
Vol 90 (3) ◽  
pp. 543-550 ◽  
Author(s):  
J. A. Blackman ◽  
J. Bingham ◽  
J. L. Davidson

SummaryWinter wheat varieties of contrasting height were grown in a series of yield trials to investigate their response to nitrogen fertilizer. The treatments also included application of fungicides and the use of nets to prevent lodging. The varieties were ‘semidwarfs’ based on the Norin 10 genetic factor Rht2 or taller ‘conventional’ varieties, all well adapted to the U.K. environment. The average response of the semi-dwarf varieties was similar to the conventional and there were varietal differences within each group. There was a marked tendency for the newer varieties to be more responsive but the varietal differences were not consistent between trials, the occurrence of powdery mildew (Erysiphe graminis) being a major factor. When this disease was prevalent, response to nitrogen was greatest in resistant varieties and increased by application of fungicides. In farm practice the optimum rate of nitrogen application for a variety will depend on its physiological response, resistance to lodging and resistance to diseases if these are not controlled by fungicides. No evidence was obtained that the gene Rht2 necessarily confers a greater response to nitrogen.


Sign in / Sign up

Export Citation Format

Share Document