Some causes of yield variation in an intensive spring barley experiment at Woburn, 1972–8

1983 ◽  
Vol 100 (1) ◽  
pp. 175-189 ◽  
Author(s):  
D. Hornby ◽  
D. R. Henden ◽  
J. A. Catt

SUMMARYAn experiment with two blocks containing phased sequences of continuous spring barley after beans or fallow was located on sandy soil over Lower Greensand on a gentle north to south (N–S) slope at Woburn Farm. Season had the greatest effect on yield with a 135% difference between the worst (1975, 1·73 t/ha) and the best (1974, 4·06 t/ha). years. N–S position was the next most important factor with average differences of 65 and 52% between the plots at the top and bottom of the site in blocks I and II respectively. The third most important factor was E–W position which gave a maximum difference of 35% in 1975.A fertility trend with a strong linear component, which was most conspicuous in drier years, followed the main slope of the experiment and was attributed to erosion (fieldwash). After 1972 as different cropping sequences were progressively introduced, yield variation due to crop sequence differences was confounded with this positional effect.Crops in the eastern block were taller by l·5–12·3% and, after adjustment for the linear trend, yield was on average 15·6% greater than in the western block. The site is astride a N–S soil boundary with Stackyard series to the east and Cottenham series to the west. The Stackyard soil has a greater available water capacity, and is subject to drought less frequently than the Cottenham soil. Using Penman's (1971) data for the Cottenham series at Woburn and estimates of profile available water for the two series elsewhere on the farm, theoretical yields were derived, which were generally greater than actual yields adjusted for the N–S linear trend (block means 1·47–4·32 t/ha), but which showed similar trends in the between-block differences. Explanations for discrepancies between theoretical and actual yields are discussed. The incidence and severity of take-all disease and differences in soil pH were always small and unlikely to have caused significant yield variations.

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 174
Author(s):  
Elena A. Babushkina ◽  
Dina F. Zhirnova ◽  
Liliana V. Belokopytova ◽  
Nivedita Mehrotra ◽  
Santosh K. Shah ◽  
...  

Improvement of dendrochronological crops yield reconstruction by separate application of earlywood and latewood width chronologies succeeded in rain-fed semiarid region. (1) Background: Tree-ring width chronologies have been successfully applied for crops yield reconstruction models. We propose application of separated earlywood and latewood width chronologies as possible predictors improving the fitness of reconstruction models. (2) Methods: The generalized yield series of main crops (spring wheat, spring barley, oats) were investigated in rain-fed and irrigated areas in semiarid steppes of South Siberia. Chronologies of earlywood, latewood, and total ring width of Siberian larch (Larix sibirica Ledeb.) growing in forest-steppe in the middle of the study area were tested as predictors of yield reconstruction models. (3) Results: In the rain-fed territory, separation of earlywood and latewood allowed increasing variation of yield explained by reconstruction model from 17.4 to 20.5%, whereas total climatic-driven component of variation was 41.5%. However, both tree-ring based models explained only 7.7% of yield variation in the irrigated territory (climate inclusion increased it to 34.8%). Low temperature sensitivity of larch growth was the main limitation of the model. A 240-year (1780–2019) history of crop failures and yield variation dynamics were estimated from the actual data and the best reconstruction model. (4) Conclusions: Presently in the study region, breeding of the environment-resistant crops varieties compensates the increase of temperature in the yield dynamics, preventing severe harvest losses. Tree-ring based reconstructions may help to understand and forecast response of the crops to the climatic variability, and also the probability of crop failures, particularly in the rain-fed territories.


2017 ◽  
Vol 63 (No. 10) ◽  
pp. 475-482 ◽  
Author(s):  
Vogel Telse ◽  
Nelles Michael ◽  
Eichler-Löbermann Bettina

In this study, the phosphorus (P) fertilizing effects of struvite, one thermochemical-treated sewage sludge ash (SSA) based on Ca-P (Ca-SSA) and one full sulfuric acid-digested SSA based on Al-P (Al-SSA) were analysed in comparison to triple superphosphate (TSP) and a control treatment (CON) without P application in a two-year field experiment. In the field experiment, the effects of the recycling products on crop yield, P uptake and labile soil P fractions were analysed. In addition, the effect of nitrogen and magnesium contained in struvite was investigated in the second year of the experiment compared to TSP and CON. In the first year, spring barley was cultivated in the field experiment; and in the second year, it was forage rye followed by sorghum. In the second year, the relative P effectiveness (forage rye, sorghum) of the recycling products compared to TSP increased in the order: Ca-SSA (81%, 91%) ≤ Al-SSA (91%, 96%) = struvite (102%, 110%). In addition, an magnesium fertilizing effect of struvite could be demonstrated. The results show that the recycling products from wastewater treatment are appropriate to substitute rock phosphate-based fertilizers.


2009 ◽  
Vol 45 (4) ◽  
pp. 429-450 ◽  
Author(s):  
W. A. J. M. DE COSTA ◽  
D. M. S. NAVARATNE ◽  
A. ANANDACOOMARASWAMY

SUMMARYThe objective of this study was to elucidate the physiological basis of the significant yield decline that occurs during the fourth year of the pruning cycle of tea. Biomass partitioning, which was hypothesized to be a major factor in causing this yield decline, was measured by destructive harvests of entire tea bushes, in two contrasting, mature, field-grown tea cultivars (TRI 2025 and DT1) at the end of different years of the pruning cycle. In both cultivars, yield showed continuous increases from year 1 to 3, followed by reductions of 44% and 35% in TRI2025 and DT1 respectively in the fourth year. Patterns of biomass partitioning to roots, stems or branches did not correlate with the above yield variation whereas harvest index, canopy leaf area index and mature leaf dry weight showed variations which paralleled the yield variation. The fourth-year decline in harvest index was brought about by reductions in both shoot number per m2 and mean individual shoot weight, which indicate a reduction in sink strength. Both cultivars showed reductions in light-saturated photosynthetic rate of maintenance foliage during the second half of the pruning cycle, indicating reduced source capacity. Hence, a combined reduction of both sink strength and source capacity during the fourth year could have brought about the significant yield reduction in tea. A significant increase of root starch in the fourth year indicated a down-regulation of physiological activities of the bush towards the end of the pruning cycle. Mechanisms responsible for this down-regulation need to be elucidated by further research.


1980 ◽  
Vol 95 (3) ◽  
pp. 583-595 ◽  
Author(s):  
A. Penny ◽  
F. V. Widdowson

SUMMARYAn experiment at Rothamsted during 1958–67 measured effects on yield, on K uptake and on soil K of applying all combinations of 38, 75 and 113 kg N and 0, 31 and 62 kg K/ha per cut to grass leys, which were cut and removed. Soil K was depleted most where most N and least K were given. Annual applications of 0, 33 and 66 kg P/ha were also tested; soil P was not depleted. The grass was then ploughed.In 1968, residual effects were measured by spring wheat. In 1969 and in 1970 104 kg/ha of fresh K was applied on half of each plot; potatoes (1969) and spring wheat (1970) valued residual and fresh effects of K.In 1971 potatoes tested 0, 104 and 208 kg/ha of fresh K, cumulatively with the three amounts given to the grass and also extra K (104 kg/ha) on half-plots, cumulatively with that given in 1969 and 1970. In 1972 winter wheat, and in 1974 and 1975 spring barley, measured residues of all treatments previously applied (the site was fallowed in 1973).Finally, in 1976, potatoes tested 0, 156 and 312 kg/ha of fresh K on whole plots, cumulatively with the previous dressings of K, and also 156 kg/ha of extra K on half-plots, again cumulatively. All these test crops were given basal N.Yields and K contents of wheat at ear emergence and yields of wheat grain were largest after grass given 38 kg N and 62 kg K/ha per cut, because here soil K depletion was least. Wheat grain yields benefited consistently from fresh K. K content of the wheat at ear emergence was a good indicator of the need for K, but K content of grain was not, because it was unaltered by K fertilizer. Barley was a poor test crop for K, because yields of grain were little affected by previous treatments.Percentage K in potato leaves (in July in 1969 and 1971, in August in 1976) and yield of tubers were well correlated. Largest yields in 1969, 1971 and 1976 came where the leaves contained 3·43, 3·76 and 2·82% K, respectively, i.e. from soil containing most exchangeable K, plus most fresh K. There was no indication that maximum yields had been obtained, so the largest amounts (kg/ha) of fresh K tested (104 in 1969, 312 in 1971 and 468 in 1976) were insufficient to counteract depletion of soil K by the grass. Because the grass did not deplete soil P, the test crops benefited only little from either residual or fresh P.


Author(s):  
Tomáš Lošák ◽  
Jaroslav Hlušek ◽  
Ivana Lampartová ◽  
Jakub Elbl ◽  
Gabriela Mühlbachová ◽  
...  

The pot experiment was established in vegetation hall in the year 2015. Spring barley, variety KWS Irina, was grown. Two different soils – chernozem from Brno (with a low phosphorus content and alkali soil reaction – 7.37) and haplic luvisol from Jaroměřice nad Rokytnou (with a high phosphorus content and slightly acid soil reaction – 6.01) were used for comparison. The rates of phosphorus in the form of triple superphosphate (45 % P2O5) were increased from 0.3 – 0.6 – 1.2 g per pot (5 kg of soil – Mitscherlich pots). Nitrogen was applied in the form of CAN (27 % N) at a rate of 1 g N per pot in all the treatments incl. the control. Using statistical analysis, significant differences were found between the two soil types both in terms of the postharvest soil P content and yields of aboveground biomass. The content of post‑harvest soil phosphorus increased significantly with the applied rate (96 – 141 – 210 mg/kg in chernozem and 128 – 179 – 277 mg/kg in haplic luvisol). Dry matter yields of the aboveground biomass grown on chernozem were the lowest in the control treatment not fertilised with P (38.97 g per pot) and increased significantly with the P rate applied (46.02 – 47.28 g per pot), although there were no significant differences among the fertilised treatments. On haplic luvisol phosphorus fertilisation was not seen at all, demonstrating that the weight of the biomass in all the treatments was balanced (48.12 – 49.63 g per pot).


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1747
Author(s):  
Agnieszka Rutkowska ◽  
Piotr Skowron

Two factorial field experiments were carried out between 2003 and 2018 in the Experimental Stations in Eastern and Western Poland using four crop rotations with winter oilseed rape, winter wheat, maize and spring barley. The initial value of phosphorus (P) in Grabów soil was 69.8 mg P·kg−1 soil and in Baborówko soil it was 111.3 mg P·kg−1 soil (Egner-Riehm Double-Lactate DL). P fertilizer was added annually at 39 kg P·ha−1 under winter oilseed rape, 35 kg P·ha−1 under maize and 31 kg P·ha−1 under wheat and barley using superphosphate and nitrogen (N), which was added at five levels (30–250 kg N·ha−1) per year as ammonium nitrate in addition to controls with no added fertilizer. Through the several years of the experiment, P fertilizer had no effect on crop N use efficiency (NUE) nor crop productivity. There was significant soil P mining particularly in the high-N fertilizer trials causing a reduction in the content of available soil P by up to 35%. This work recommends that, based on soil P analysis, P fertilizer should not be added to high-P soils. This practice may continue uninterrupted for several years (16 in this case) until the excess soil P has been reduced. This mechanism of removal of “legacy” P from soil has major implications in reducing runoff P into the Baltic Sea drainage area and other water bodies.


1992 ◽  
Vol 118 (1) ◽  
pp. 17-28 ◽  
Author(s):  
N. D. Boatman

SUMMARYSix experiments were carried out over 2 years (1985 and 1986) in commercial spring barley crops on calcareous soils in Hampshire. Herbicides increased grain yield by 0·05–1·21 t/ha, and fungicides by 0·01–0·68 t/ha. Herbicide use affected each of the yield components ears/plant, grains/ear, 1000-grain weight and harvest index in one or more cases but the effects were not consistent between experiments or consistently related to yield increases. Fungicide use had little effect on yield components other than 1000-grain weight, which was significantly increased in all experiments. There were no significant herbicide × fungicide interactions. Large differences in yield were recorded between field edge (headland) and midfield plots, with headland plots outyielding the midfield in two of the three experiments where this effect was considered.The effects of fungicide use were accounted for by associated increases in the green lamina area of the flag leaf and second leaf at the late milk stage of grain development. This is consistent with previous work. Differences in yield response to herbicide between sites were linearly related both to weed numbers early in the season and to weed biomass at harvest. Weeds did not always directly replace crop biomass; in some experiments the combined dry matter production was greater when herbicide was not used. However, the results indicate that, where a diverse weed flora composed of species of moderate to low competitive ability is present, simple weed counts may provide a useful indication of potential yield loss.It is concluded that headland areas can often be as productive as the rest of the field, but a greater understanding of the factors involved is needed if this potential is to be realized.


1985 ◽  
Vol 65 (1) ◽  
pp. 169-177 ◽  
Author(s):  
P. A. O’SULLIVAN ◽  
G. M. WEISS ◽  
D. FRIESEN

Field experiments were conducted in 1982 and 1983 to investigate the tolerance of barley (Hordeum vulgare L. ’Galt’) seeded 5 cm deep in a Ponoka loam soil treated with trifluralin. There were eight rates of application from 0 to 3 kg/ha applied in fall and spring and incorporated by means of a rototiller set to till to a depth of 10 cm. All data were analyzed by regression. Gas chromatographic analysis of extracts of soil samples collected in the spring following fall application of trifluralin (0.0–3.0 kg/ha) indicated that approximately 45% of the herbicide was lost regardless of rate applied. Fall application of trifluralin up to 3 kg/ha and spring application up to 1.1 kg/ha did not adversely affect the numbers of barley seedlings that emerged. Trifluralin treatments within the rate range 0.85–1.4 kg/ha caused severe early injury (delayed growth) to barley, the magnitude of which varied with the season and year of application. Fall application caused less injury than the respective spring application during both years. With fall or spring applications up to 1.3 kg/ha or 1.0 kg/ha, respectively, barley yields were not reduced compared to the untreated control. With fall application at 1.4 kg/ha barley yield was reduced in one of the two years. Rates in excess of 1.8 kg/ha caused significant yield reductions with all treatments. The data indicate that trifluralin could be used as a deep-incorporated fall or spring treatment at rates up to 1.3 or 1.0 kg/ha, respectively for weed control in barley in central Alberta. Fall application would improve the safety to the crop. Barley could also be seeded into soil where trifluralin (1.4 kg/ha) was applied as a fall treatment for weed control in rapeseed (Brassica campestris L. and Brassica napus L.), but some loss of yield could be expected.Key words: Trifluralin rate, soil incorporation, barley, tolerance


1980 ◽  
Vol 94 (2) ◽  
pp. 389-397 ◽  
Author(s):  
A. Bainbridge ◽  
M. E. Finney ◽  
J. F. Jenkyn

SummaryIn experiments on winter barley in 1975–6 and 1977–8 early or late sowing, full or half seed rate, nitrogen applied in March or April and tridemorph spray applied in autumn, early spring and late spring were assessed factorially in all combinations for their effects on mildew development, crop growth and grain yield.Date of sowing had the biggest effect on yield. Early-sown crops (24 September 1975, 6 October 1977) greatly out-yielded the late-sown; by 79·8% in the first year and 53·9% in the second. Late sowing (6 November 1975, 2 November 1977) approximately halved plant emergence. Although late-sown plants developed more tillers, more grains per ear and larger grain this failed to compensate for the thinner stand.Sowing at half seed rate did not decrease yield when compared with the crop sown at the full seed rate on the same date. In contemporaneous crops extra tillering and larger ears generally compensated for fewer plants.The effect of date of applying N was variable. April N gave the best yield in the early· and late-sown crops in 1975–6 and in the late-sown crop in 1977–8. However, in the early-sown crop in the second year March N was best. Number of ears was increased in early-sown crops by March N but date of N application had no influence on number of ears in late-sown crops or on the number of grains per ear in any crop.The winter of 1975–6 was mild and mildew developed on both early· and late-sown crops throughout their growth.Single tridemorph sprays applied in autumn (14 November) to the early-sown crop or winter (25 February) to the late-sown crop or early spring (9 April) to both crops gave significant yield increases of 6·3–7·6%. Applying two sprays, one in autumn or winter plus one in early spring gave an increase equal to the sum of each applied separately. A late spring spray (14 May) had no significant effect on yield. The 1977–8 winter was colder and although mildew was moderate on the early-sown crop in autumn it was almost absent from this experiment after winter. Spraying failed to increase yield significantly.


1991 ◽  
Vol 71 (2) ◽  
pp. 461-472 ◽  
Author(s):  
W. E. Grey ◽  
R. E. Engel ◽  
D. E. Mathre

The reaction of spring barley to common root rot and its effect on yield components, plant stand, and disease severity was studied under several moisture regimes. Infection of barley from natural soil inoculum, primarily Cochliobolus sativus, was augmented with inoculum of C. sativus or Fusarium culmorum to insure uniform disease pressure during plant development. In one study during the 1986 and 1987 growing seasons, a line-source sprinkler irrigation system was utilized to establish a soil moisture gradient from a high-moisture regime receiving both irrigation water and rainfall to a dryland regime receiving only rainfall. In 1986, a second study was carried out to examine the effect of soil moisture at three locations that differed in annual precipitation. Plant emergence and harvestable tillers were reduced by C. sativus in both studies as compared to the noninoculated controls. Grain yield loss was associated with C. sativus and low plant density under drought but not under moderate to high moisture conditions. In the irrigated moisture regimes, moderate and high rainfall locations, the inoculated plants compensated for reduced plant stand and harvestable tillers by producing heavier kernels. Disease severity, based on the subcrown internode lesion development during the soft dough growth stage, did not differ in the dryland and irrigated moisture regimes. However, disease severity was higher in the drought location than in the moderate and high rainfall locations. Prolonged drought and disease pressure during seedling development can result in grain yield reductions, whereas subsequent moisture will affect the crop's ability to compensate for common root rot. Key words: Hordeum vulgare, ranking and selection, canopy temperature


Sign in / Sign up

Export Citation Format

Share Document