Effect of light intensity on assimilation characteristics of detached tea leaves

1964 ◽  
Vol 63 (2) ◽  
pp. 265-271 ◽  
Author(s):  
D. N. Barua

Photosynthetic rates of detached, mature tea leaves from four different sources were determined in excess CO2 and light of 4, 10, 16 and 32 klux intensities from a tungsten-filament lamp. Temperature was maintained at 25°C. The assimilation rates were significantly different for the four sources both in weak and in strong light. Neither thickness of the leaf lamina nor chlorophyll concentration could explain the cause of this difference.The effect of shade adaptation on the subsequent rate of assimilation was examined in one of the four sources of leaf. Shade-adapted leaves had significantly higher rates of photosynthesis at the weakest light intensity of 4 klux and lower rates in 16 and 32 klux intensities than the corresponding sun leaves.

2010 ◽  
Vol 56 (No. 12) ◽  
pp. 551-556 ◽  
Author(s):  
C. Hao ◽  
R. Fan ◽  
X. Zhang ◽  
L. Wang ◽  
W. Chen ◽  
...  

To determine the effect of light stress under fragmental habitat on the physiology, this paper investigated the physiological responses of Monimopetalum chinense with different light intensities in the Xianyu Mountains (Anhui, China). The study showed that both weak and intense light brought about by habitat fragmentation could improve antioxidant enzymes activities, and promote electrical conductivity and malondialdehyde content of M. chinense leaves. However, too strong light could inhibit photosynthesis rates, superoxide dismutase, catalase, and ascorbate peroxidase activities. In addition, the characteristics of leaves were affected by light intensity at the fragmental habitat. Specifically, intense light was disadvantageous to photosynthesis and antioxidant enzymes of the species. Our results suggest that the biodiversity conservation of M. chinense is necessary, and that light intensity should be considered carefully when implementing conservation efforts.  


2018 ◽  
Vol 7 (4.30) ◽  
pp. 209 ◽  
Author(s):  
Aisha Idris ◽  
Alona C. Linatoc ◽  
Aisha M. Aliyu ◽  
Surayya M. Muhammad ◽  
Mohd Fadzelly Bin Abu Bakar

Light affects the growth and development of plants by influencing the physical appearance of one leaf as well as the appearance of the whole plant. Plant photosynthesis, stomata density, and pigment contents are all influenced by light The objective of this research is to determine the effect of light on the photosynthesis, pigment content and stomatal density of Sun and Shade Leaves of Vernonia amygdalina. Gas exchange was measured using Li-6400 and the data obtained was used to create a light response curve where parameters including light saturation point (LSP), light compensation point (LCP) and apparent quantum yield were estimated. Photosynthetic pigment were quantified spectrophotometrically.  Moreover, the stomatal density was counted under light microscope, after making a nail polish impression of the leaf. The results discovered shows that as the light intensity increases, the gas exchange and stomatal density increases while the photosynthetic pigment of the studied plant decreases (P<0.05). In addition, LSP and LCP increases with increasing light intensity. Besides, statistically significant negative correlation (P<0.05) was achieved among stomatal density and transpiration rate thereby leading to a conclusion that sun leaves of Vernonia amygdalina contribute the highest assimilation rate to the plant than shade leaves. Yet, the higher stomatal density of sun leaves provides water saving to the plant.


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Cuinan Yue ◽  
Zhihui Wang ◽  
Puxiang Yang

Abstract Background Light is the ultimate energy source of plant photosynthesis, which has an important impact on the growth, development, physiology and biochemistry of tea plant. Photosensitive etiolated tea plant belongs to a kind of colored leaf plant, which is a physiological response to light intensity. Compared with conventional green bud and leaf of tea plant, the accumulation of pigment compounds (chlorophyll and carotenoids, etc.) closely related to a series of reactions of photosynthesis in photosensitive etiolated tea plant is reduced, resulting in the difference of leaf color of tea. This specific tea resource has high application value, among which high amino acid is one of its advantages. It can be used to process high-quality green tea with delicious taste and attractive aroma, which has been widely attention. The mechanism of the color presentation of the etiolated mutant tea leaves has been given a high topic and attention, especially, what changes have taken place in the pigment compounds of tea leaves caused by light, which makes the leaves so yellow. At present, there have been a lot of research and reports. Purpose of the review We describe the metabolism and differential accumulation of key pigment compounds affecting the leaf color of photosensitive etiolated tea that are triggered by light, and discuss the different metabolism and key regulatory sites of these pigments in different light environments in order to understand the “discoloration” matrix and mechanism of etiolated tea resources, answer the scientific question between leaf color and light. It provides an important strategy for artificial intervention of discoloration of colored tea plant. Conclusion The differential accumulation of pigment compounds in tea plant can be induced phytochrome in response to the change of light signal. The synthesis of chlorophyll in photoetiolated tea plants is hindered by strong light, among which, the sites regulated by coproporphyrinogen III oxidase and chlorophyllide a oxidase is sensitive to light and can be inhibited by strong light, resulting in the aggravation of leaf etiolation. The phenomenon can be disappeared or weakened by shading or reducing light intensity, and the leaf color is greenish, but the increase of chlorophyll-b accumulation is more than that of chlorophyll-a. The synthesis of carotenoids is inhibited strong light, and high the accumulation of carotenoids is reduced by shading. Most of the genes regulating carotenoids are up-regulated by moderate shading and down-regulated by excessive shading. Therefore, the accumulation of these two types of pigments in photosensitive etiolated tea plants is closely related to the light environment, and the leaf color phenotype shape of photosensitive etiolated tea plants can be changed by different light conditions, which provides an important strategy for the production and management of tea plant.


Author(s):  
C. S. Bricker ◽  
S. R. Barnum ◽  
B. Huang ◽  
J. G. Jaworskl

Cyanobacteria are Gram negative prokaryotes that are capable of oxygenic photosynthesis. Although there are many similarities between eukaryotes and cyanobacteria in electron transfer and phosphorylation during photosynthesis, there are two features of the photosynthetic apparatus in cyanobacteria which distinguishes them from plants. Cyanobacteria contain phycobiliproteins organized in phycobilisomes on the surface of photosynthetic membrane. Another difference is in the organization of the photosynthetic membranes. Instead of stacked thylakolds within a chloroplast envelope membrane, as seen In eukaryotes, IntracytopIasmlc membranes generally are arranged in three to six concentric layers. Environmental factors such as temperature, nutrition and light fluency can significantly affect the physiology and morphology of cells. The effect of light Intensity shifts on the ultrastructure of Internal membrane in Anabaena variabilis grown under controlled environmental conditions was examined. Since a major constituent of cyanobacterial thylakolds are lipids, the fatty acid content also was measured and correlated with uItrastructural changes. The regulation of fatty acid synthesis in cyanobacteria ultimately can be studied if the fatty acid content can be manipulated.


2019 ◽  
Vol 64 (11) ◽  
pp. 1007-1014
Author(s):  
Tong XU ◽  
◽  
Jia-Hui ZHANG ◽  
Zhao-Ying LIU ◽  
Xuan LI ◽  
...  

Plants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 31 ◽  
Author(s):  
Maria N. Metsoviti ◽  
George Papapolymerou ◽  
Ioannis T. Karapanagiotidis ◽  
Nikolaos Katsoulas

In this research, the effect of solar irradiance on Chlorella vulgaris cultivated in open bioreactors under greenhouse conditions was investigated, as well as of ratio of light intensity in the 420–520 nm range to light in the 580–680 nm range (I420–520/I580–680) and of artificial irradiation provided by red and white LED lamps in a closed flat plate laboratory bioreactor on the growth rate and composition. The increase in solar irradiance led to faster growth rates (μexp) of C. vulgaris under both environmental conditions studied in the greenhouse (in June up to 0.33 d−1 and in September up to 0.29 d−1) and higher lipid content in microalgal biomass (in June up to 25.6% and in September up to 24.7%). In the experiments conducted in the closed bioreactor, as the ratio I420–520/I580–680 increased, the specific growth rate and the biomass, protein and lipid productivities increased as well. Additionally, the increase in light intensity with red and white LED lamps resulted in faster growth rates (the μexp increased up to 0.36 d−1) and higher lipid content (up to 22.2%), while the protein, fiber, ash and moisture content remained relatively constant. Overall, the trend in biomass, lipid, and protein productivities as a function of light intensity was similar in the two systems (greenhouse and bioreactor).


Sign in / Sign up

Export Citation Format

Share Document