scholarly journals Review: the effect of light on the key pigment compounds of photosensitive etiolated tea plant

2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Cuinan Yue ◽  
Zhihui Wang ◽  
Puxiang Yang

Abstract Background Light is the ultimate energy source of plant photosynthesis, which has an important impact on the growth, development, physiology and biochemistry of tea plant. Photosensitive etiolated tea plant belongs to a kind of colored leaf plant, which is a physiological response to light intensity. Compared with conventional green bud and leaf of tea plant, the accumulation of pigment compounds (chlorophyll and carotenoids, etc.) closely related to a series of reactions of photosynthesis in photosensitive etiolated tea plant is reduced, resulting in the difference of leaf color of tea. This specific tea resource has high application value, among which high amino acid is one of its advantages. It can be used to process high-quality green tea with delicious taste and attractive aroma, which has been widely attention. The mechanism of the color presentation of the etiolated mutant tea leaves has been given a high topic and attention, especially, what changes have taken place in the pigment compounds of tea leaves caused by light, which makes the leaves so yellow. At present, there have been a lot of research and reports. Purpose of the review We describe the metabolism and differential accumulation of key pigment compounds affecting the leaf color of photosensitive etiolated tea that are triggered by light, and discuss the different metabolism and key regulatory sites of these pigments in different light environments in order to understand the “discoloration” matrix and mechanism of etiolated tea resources, answer the scientific question between leaf color and light. It provides an important strategy for artificial intervention of discoloration of colored tea plant. Conclusion The differential accumulation of pigment compounds in tea plant can be induced phytochrome in response to the change of light signal. The synthesis of chlorophyll in photoetiolated tea plants is hindered by strong light, among which, the sites regulated by coproporphyrinogen III oxidase and chlorophyllide a oxidase is sensitive to light and can be inhibited by strong light, resulting in the aggravation of leaf etiolation. The phenomenon can be disappeared or weakened by shading or reducing light intensity, and the leaf color is greenish, but the increase of chlorophyll-b accumulation is more than that of chlorophyll-a. The synthesis of carotenoids is inhibited strong light, and high the accumulation of carotenoids is reduced by shading. Most of the genes regulating carotenoids are up-regulated by moderate shading and down-regulated by excessive shading. Therefore, the accumulation of these two types of pigments in photosensitive etiolated tea plants is closely related to the light environment, and the leaf color phenotype shape of photosensitive etiolated tea plants can be changed by different light conditions, which provides an important strategy for the production and management of tea plant.

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5836
Author(s):  
Jian-Hui Ye ◽  
Yi-Qing Lv ◽  
Sheng-Rui Liu ◽  
Jing Jin ◽  
Yue-Fei Wang ◽  
...  

Black net shade treatment attenuates flavonoid biosynthesis in tea plants, while the effect of light quality is still unclear. We investigated the flavonoid and transcriptome profiles of tea leaves under different light conditions, using black nets with different shade percentages, blue, yellow and red nets to alter the light intensity and light spectral composition in the fields. Flavonol glycosides are more sensitive to light intensity than catechins, with a reduction percentage of total flavonol glycosides up to 79.6% compared with 38.7% of total catechins under shade treatment. A total of 29,292 unigenes were identified, and the KEGG result indicated that flavonoid biosynthesis was regulated by both light intensity and light spectral composition while phytohormone signal transduction was modulated under blue net shade treatment. PAL, CHS, and F3H were transcriptionally downregulated with light intensity. Co-expression analysis showed the expressions of key transcription factors MYB12, MYB86, C1, MYB4, KTN80.4, and light signal perception and signaling genes (UVR8, HY5) had correlations with the contents of certain flavonoids (p < 0.05). The level of abscisic acid in tea leaves was elevated under shade treatment, with a negative correlation with TFG content (p < 0.05). This work provides a potential route of changing light intensity and spectral composition in the field to alter the compositions of flavor substances in tea leaves and regulate plant growth, which is instructive to the production of summer/autumn tea and matcha.


1964 ◽  
Vol 63 (2) ◽  
pp. 265-271 ◽  
Author(s):  
D. N. Barua

Photosynthetic rates of detached, mature tea leaves from four different sources were determined in excess CO2 and light of 4, 10, 16 and 32 klux intensities from a tungsten-filament lamp. Temperature was maintained at 25°C. The assimilation rates were significantly different for the four sources both in weak and in strong light. Neither thickness of the leaf lamina nor chlorophyll concentration could explain the cause of this difference.The effect of shade adaptation on the subsequent rate of assimilation was examined in one of the four sources of leaf. Shade-adapted leaves had significantly higher rates of photosynthesis at the weakest light intensity of 4 klux and lower rates in 16 and 32 klux intensities than the corresponding sun leaves.


2015 ◽  
Vol 10 (5) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Wei-Wei Deng ◽  
Min Li ◽  
Chen-Chen Gu ◽  
Da-Xiang Li ◽  
Lin-Long Ma ◽  
...  

Caffeine, a purine alkaloid, is a major secondary metabolite in tea leaves. The demand for low caffeine tea is increasing in recent years, especially for health reasons. We report a novel grafted tea material with low caffeine content. The grafted tea plant had Camellia sinensis as scions and C. oleifera as stocks. The content of purine alkaloids was determined in the leaves of one-year-old grafted tea plants by HPLC. We also characterized caffeine synthase (CS), a key enzyme involved in caffeine biosynthesis in tea plants, at the expression level. The expression patterns of CS were examined in grafted and control leaves by Western blot, using a self-prepared polyclonal antibody with high specificity and sensitivity. The expression of related genes ( TCS1, tea caffeine synthase gene, GenBank accession No. AB031280; sAMS, SAM synthetase gene, AJ277206; TIDH, IMP dehydrogenase gene, EU106658) in the caffeine biosynthetic pathway was investigated by qRT-PCR. HPLC showed that the caffeine content was only 38% as compared with the non-grafted tea leaves. Immunoblotting analysis showed that CS protein decreased by half in the leaves of grafted tea plants. qRT-PCR revealed no significant changes in the expression of two genes in the upstream pathway ( sAMS and TIDH), while the expression of TCS1 was greatly decreased (50%). Taken together, these data revealed that the low caffeine content in the grafted tea leaves is due to low TCS1 expression and CS protein accumulation.


2018 ◽  
Vol 159 ◽  
pp. 02025 ◽  
Author(s):  
Eflita Yohana ◽  
Mohammad Endy Yulianto ◽  
Shofwan Bahar ◽  
Azza Alifa Muhammad ◽  
Novi Laura Indrayani

Tea plants in Indonesia are derived from Carmelia sinensis var. assamica which contain catechin in quite high amount compared with other countries tea plant. Green tea is made by inactivating the oxidase / phenolase enzyme that presents in the fresh tea leaf buds from tea garden, by using hot steam to prevent the oxidation of the catechins. Drying process to reduce the moisture of tea, one of the method is by utilizing the dry air from dehumidification process. Liquid desiccant made from 50% concentration of CaCl2, the temperature is lowered to 10 °C and sprayed into the air stream which contains water vapor by using a 0.2 mm spraying nozzle so that mass transfer and latent heat occur in the dehumidifier. The result of air dehumidification process used for drying tea leaves. The air is able to dry the tea leaves from the weight of 58 grams to 47 grams. Then the liquid desiccant dehumidification process will be streamed into the humidifier, where the liquid desiccant regeneration process will have change into the initial concentration. The result of air humidification process has an average absolute humidity rise of 0.07 g/kg. The liquid desiccant regeneration process that happened continuously reaching the saturation point at 280 minutes. It can be concluded that the process of dehumidification-humidification is a fairly effective method for drying the tea leaves.


2020 ◽  
Vol 21 (16) ◽  
pp. 5684 ◽  
Author(s):  
Xiaochen Zhou ◽  
Lanting Zeng ◽  
Yingjuan Chen ◽  
Xuewen Wang ◽  
Yinyin Liao ◽  
...  

In tea (Camellia sinensis) plants, polyphenols are the representative metabolites and play important roles during their growth. Among tea polyphenols, catechins are extensively studied, while very little attention has been paid to other polyphenols such as gallic acid (GA) that occur in tea leaves with relatively high content. In this study, GA was able to be transformed into methyl gallate (MG), suggesting that GA is not only a precursor of catechins, but also can be transformed into other metabolites in tea plants. GA content in tea leaves was higher than MG content—regardless of the cultivar, plucking month or leaf position. These two metabolites occurred with higher amounts in tender leaves. Using nonaqueous fractionation techniques, it was found that GA and MG were abundantly accumulated in peroxisome. In addition, GA and MG were found to have strong antifungal activity against two main tea plant diseases, Colletotrichum camelliae and Pseudopestalotiopsis camelliae-sinensis. The information will advance our understanding on formation and biologic functions of polyphenols in tea plants and also provide a good reference for studying in vivo occurrence of specialized metabolites in economic plants.


2012 ◽  
Vol 610-613 ◽  
pp. 181-185 ◽  
Author(s):  
Xiao Hua Duan ◽  
Xiao Fei Hu ◽  
Fu Sheng Chen ◽  
Ze Yuan Deng

The effects of simulated acid rain and aluminum (Al) addition on growth and photosynthesis physiology of tea plants (Camellia sinensis L.) were studied with tea seedlings in a hydroculture experiment. Results showed that the growth of tea plant, chlorophyll content, and photosynthesis (Pn) of tea leaves were better in the treatments of suitable Al addition (10 mg/L and/or 20 mg/L) than the treatments without Al addition and higher Al addition (30 mg/L). The growth of tea plant increased with increasing acidity of acid rain, while the leaves of tea plant showed more chlorophyll content and higher Pn at the treatment of pH 4.0 than pH 5.0 and pH 3.0 acid solutions. The growth of tea plant, chlorophyll content and Pn were the best at the combined treatment of suitable Al addition (10~20 mg/L) and moderate acidity of acid rain (pH 4.0), while the slowest at the combined treatment of 30 mg/L Al and pH 3.0 acid rain. These results suggested that suitable Al and moderate acidity of acid rain are helpful to increase tea production by increasing photosynthesis capacity.


Author(s):  
Arif Ridho Lubis ◽  
Santi Prayudani ◽  
Muharman Lubis ◽  
Al Khowarizmi

The tea plants (Camellia Sinensis) are small tree species that use leaves and leaf buds to produce tea harvested through a monoculture system. It is an agriculture practice to cultivate one types of crop or livestock, variety or breed on a farm annually. Moreover, the emergence of pests, pathogens and diseases cause serious damages to tea plants significantly to its productivity and quality to optimum worst. All parts of the tea plant such as leaves, stems, roots, flowers and fruits are exposed to these harm lead to loss of yield 7 until 10% per year. The intensity of these attacks vary greatly on particular climate, the degree slope and the plant material used. Therefore, this study analyzes tea leaves as a common part used in recipes to create unique taste and flavor in tea production, especially in agro-industry. The decision making method used is Fuzzy Mamdani Inference as one of model with functional hierarchy with initial input based on established criteria. Fuzzy logic will provide tolerance to the set of value, so that small changes will not result in significant category differences, only affect the membership level on the variable value. Previous method using probabilities have shown 78% tea leaves have been attacked by category C (Gray Blight) while using Mamdani indicated 86% of tea leaves have been infected. In this case, this result pointed out that Fuzzy Mamdani Inferences have more optimal result compare to the previous method.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 915 ◽  
Author(s):  
Yingying Li ◽  
Qiuqiu Zhang ◽  
Lina Ou ◽  
Dezhong Ji ◽  
Tao Liu ◽  
...  

Cold stress caused by a low temperature is a significant threat to tea production. The application of chitosan oligosaccharide (COS) can alleviate the effect of low temperature stress on tea plants. However, how COS affects the cold stress signaling in tea plants is still unclear. In this study, we investigated the level of physiological indicators in tea leaves treated with COS, and then the molecular response to the cold stress of tea leaves treated with COS was analyzed by transcriptomics with RNA-Sequencing (RNA-Seq). The results show that the activity of superoxide dismutase (SOD) activity, peroxidase (POD) activity, content of chlorophyll and soluble sugar in tea leaves in COS-treated tea plant were significantly increased and that photosynthesis and carbon metabolism were enriched. Besides, our results suggest that COS may impact to the cold stress signaling via enhancing the photosynthesis and carbon process. Our research provides valuable information for the mechanisms of COS application in tea plants under cold stress.


10.5219/1401 ◽  
2020 ◽  
Vol 14 ◽  
pp. 1020-1026
Author(s):  
Nataliia Platonova ◽  
Oksana Belous

The dynamics of guaiacol peroxidase and photosynthetic pigments in 3-leaf sprouts (flushes) of tea plants were studied. The presence of declines and peaks in the activity of the enzyme associated with the meteorological conditions of each month was noted. It is shown that there is a direct relationship between the increase in enzyme activity and hydrothermal factors. The most significant correlation was found between the activity of GPO in a 3-leaf tea flush and the amount of precipitation (r = 0.86). The highest activity of guaiacol peroxidase during the entire vegetation period is distinguished by the Sochi variety and form 582. The lowest activity was observed in forms 3823 and 2264, which indicates a low intensity of redox reactions in these plants in stressful situations. Determining the dynamics of the pigment complex revealed its dependence on hydrothermal factors. Studies have shown that precipitation is a significant factor affecting the pigment complex of tea plants. It was found that the largest amount of green pigments is synthesized by leaves at the beginning of active vegetation (May). The participation of the pigment apparatus in the adaptation of the tea plant is directly related to carotenoids, the increase in the number of carotenoids coincides with the period of drought. In the content of photosynthetic pigments and the activity of guaiacol peroxidase manifest genotypic features. The revealed patterns are common to all tea plants.


2018 ◽  
Vol 19 (8) ◽  
pp. 2414 ◽  
Author(s):  
Chen Huang ◽  
Jin Zhang ◽  
Xin Zhang ◽  
Yongchen Yu ◽  
Wenbo Bian ◽  
...  

Polyphenol oxidases (PPOs) have been reported to play an important role in protecting plants from attacks by herbivores. Though PPO genes in other plants have been extensively studied, research on PPO genes in the tea plant (Camellia sinensis) is lacking. In particular, which members of the PPO gene family elicit the defense response of the tea plant are as yet unknown. Here, two new PPO genes, CsPPO1 and CsPPO2, both of which had high identity with PPOs from other plants, were obtained from tea leaves. The full length of CsPPO1 contained an open reading frame (ORF) of 1740 bp that encoded a protein of 579 amino acids, while CsPPO2 contained an ORF of 1788 bp that encoded a protein of 595 amino acids. The deduced CsPPO1 and CsPPO2 proteins had calculated molecular masses of 64.6 and 65.9 kDa; the isoelectric points were 6.94 and 6.48, respectively. The expression products of recombinant CsPPO1 and CsPPO2 in Escherichia coli were about 91 and 92 kDa, respectively, but the recombinant proteins existed in the form of an inclusion body. Whereas CsPPO1 is highly expressed in stems, CsPPO2 is highly expressed in roots. Further results showed that the expression of CsPPO1 and CsPPO2 was wound- and Ectropis obliqua-induced, and that regurgitant, unlike treatment with wounding plus deionized water, significantly upregulated the transcriptional expression of CsPPO2 but not of CsPPO1. The difference between regurgitant and wounding indicates that CsPPO2 may play a more meaningful defensive role against E. obliqua than CsPPO1. Meanwhile, we found the active component(s) of the regurgitant elicited by the expression of CsPPO may contain small molecules (under 3-kDa molecular weight). These conclusions advance the understanding of the biological function of two new PPO genes and show that one of these, CsPPO2, may be a promising gene for engineering tea plants that are resistant to E. obliqua.


Sign in / Sign up

Export Citation Format

Share Document