Potential of low-protein genotypes for nitrogen management in malting barley production

2004 ◽  
Vol 142 (3) ◽  
pp. 319-325 ◽  
Author(s):  
L. C. EMEBIRI ◽  
D. B. MOODY

Nitrogen (N) levels in the soil and N fertilization are among the major factors that affect grain protein concentration (GPC) in malting barley (Hordeum vulgare L.). The use of inherently low protein cultivars might be an advantage in conditions of excessive soil N or in situations where N is applied to maximize yield. In the present study, eight malting barley genotypes were grown under dryland and irrigated conditions to compare their response to four rates of nitrogen (N) application (0, 30, 60 and 120 kg/ha). The trials were carried out in 1998 and 1999 at a site in the Wimmera region of Victoria, Australia, which has a Mediterranean-type environment. Seasonal differences accounted for a large proportion of the observed variation in GPC, but had little influence on variation in grain yield. Nitrogen application significantly increased grain yield and GPC, and decreased kernel weight and plumpness. The rate of response for grain protein was higher under dryland than irrigated conditions, but the genotype-by-nitrogen interaction was not significant under both conditions. To further characterize genotypic response, the method of pattern analysis was used to identify groups of genotypes showing a similar pattern in their response to N application and to relate the patterns to available knowledge about the inherent GPC of their grains. The eight genotypes were clustered into three entry groups, corresponding to low, moderate and high-protein genotypes. There was little difference among groups in the rate of response to N application. However, the genotype group with inherently low GPC maintained the lower protein over those with higher grain protein at the different rates of N application. Under dryland conditions, the low-protein genotypes tended to have less plump kernels with increasing rates of N application than the respective high-protein group.

1996 ◽  
Vol 36 (6) ◽  
pp. 665 ◽  
Author(s):  
WM Strong ◽  
RC Dalal ◽  
EJ Weston ◽  
JE Cooper ◽  
KJ Lehane ◽  
...  

Cereal production in the summer-dominant rainfall region of Australia, especially the north-east, has relied heavily on natural soil fertility. Continued cereal production has so depleted the fertility of some soils that corrective strategies are required to restore the production of high protein wheat needed for domestic and export markets. Application of nitrogen (N) fertilisers, along with other strategies to improve soil N status, was evaluated between 1987 and 1994 on a Vertisol located in an area of unreliable winter rainfall. Responses of wheat grain yield and protein content to applied N (0-150 kg/ha) under zero tillage (ZT) and conventional tillage (CT) were determined each year, except 1991 when severe drought prevented wheat sowing. The ZT practices increased grain yields, particularly in 1988 and 1992-93 when antecedent soil water supplies were moderate (about 1 m wet soil in 1988 and 1992) or low (about 0.6 m wet soil in 1993), apparently due to increased antecedent soil water. Tillage practice had little effect on available nitrate-N (kg/ha) to 1.5 m, but the greater water supply in ZT soil usually benefited the wheat crop when N was applied. Applying N increased returns from 5 of the 7 crops because of grain yield and/or grain protein responses. Grain yield responses were inconsistent in the year of fertiliser application where no N fertiliser had been applied to preceding crops. Nevertheless, grain protein usually increased with increasing N application at sowing, except in 1994, when drought after sowing prevented secondary root development and fertiliser uptake. Where N was applied with each successive crop, the crops receiving small N applications (0, 12.5 or 25 kg/ha.crop) produced grain of a low protein concentration (<10%) and lower yields (<90% maximum yield) than crops which received larger N applications (75 kg/ha.crop). Profits were substantially reduced where the rate of N applied was insufficient to raise grain protein concentration to >11.5%, due to the low market value of low protein wheat, or because of lower grain yields. Routine N application to crops over the period 1987-94, which included the longest drought (1990-94) in the lifetime of most producers, caused similarly inconsistent grain yield increases but increased grain protein concentrations (>11.5%) in all except the first crop (1987). Increased frequency of high protein wheat and a high anticipated market value of the higher protein grain should encourage greater producer confidence with routine application of N throughout this region.


2021 ◽  
Vol 58 (4) ◽  
pp. 530-539
Author(s):  
Rashmi Upadhyay ◽  
Mamta Banjara ◽  
Devidas Thombare ◽  
Shrikant Yankanchi ◽  
Girish Chandel

Understanding the gravity of nutritional significance of rice (Oryza sativa L.) protein, an experiment conducted in Randomized Complete Block Design (RCBD) involving effect of nitrogen (N) rates i.e.,140 kg N/ha, 120 kg N/ha, 100 kg N/ha and 80 kg N/ha on grain protein content, yield parameters and cooking characteristics of polished rice from eight rice genotypes was conducted. N application significantly affected the grain protein content, grain yield, head rice recovery, plant height and effective tillers. In high protein cultivars substantially low to intermediate amylose content and more cooking time was recorded while in low protein counterpart amylose content was comparatively high with low cooking time. Maximum cooking time in polished rice was of 25 min at 180 kg N/ha dose and highest amylose content of about 27% at 80 kg N/ha. Gumminess and hardness of cooked rice and cooking time significantly elevated with increase in N dose. The substantial differences in grain protein content in brown, polished and cooked rice was observed. Cooking revealed the significant increase in protein content ranged from 50%-70% in low protein to high protein genotypes. R-RGM-ATN-47 with highest grain yield of 62.13 q/ha, grain protein content of 10.00 % in polished rice and intermediate amylose appears to be the most promising candidate.


2002 ◽  
Vol 82 (3) ◽  
pp. 507-512 ◽  
Author(s):  
H. Wang ◽  
M. R. Fernandez ◽  
F. R. Clarke ◽  
R. M. DePauw ◽  
J. M. Clarke

Although leaf spotting diseases have been reported to have a negative effect on grain yield and seed characteristics of wheat (Triticum spp.), the magnitude of such effects on wheat grown on dryland in southern Saskatchewan is not known. A fungicide experiment was conducted at Swift Current (Brown soil) and Indian Head (Black soil) from 1997 to 1999 to determine the effect of leaf spotting diseases on yield and seed traits of wheat. Two fungicides, Folicur 3.6F and Bravo 500, were applied at different growth stages on three common wheat (Triticum aestivum L.) and three durum wheat (T. turgidum L. var durum) genotypes. Fungicide treatments generally did not affect yield, kernel weight, test weight or grain protein concentration, and these effects were relatively consistent among genotypes. Folicur applied at head emergence in 1997 and at flag leaf emergence and/or head emergence in 1998 increased yield at Indian Head (P < 0.05). Fungicides applied at and before flag leaf emergence tended to increase kernel weight. Grain protein concentration increased only in treatments of Bravo applications at Indian Head in 1998. These results suggested that under the dryland environment and management in southern Saskatchewan leaf spotting diseases generally have a small effect on yield, kernel weight, test weight and protein concentration. Key words: Wheat, leaf spotting diseases, fungicide, yield


1981 ◽  
Vol 21 (111) ◽  
pp. 424 ◽  
Author(s):  
WM Strong

Eighteen fertilizer trials, each with five levels of nitrogen (N) and three levels of phosphorus (PI, were conducted on black earth soils of the Darling Downs to establish optimal economic rates of N fertilizer in commercial, irrigated wheat crops. The optimal economic rate of N with a fertilizer: wheat price ratio (kg N: kg grain) of 5:l, the yield response of 100 kg/ha of applied N, the yield without fertilizer, and the yield with fertilizer not limiting were calculated from derived yield response relations at each site. A multi-variate regression procedure was used to determine which soil or crop management factors significantly influenced the rate of N needed to optimize wheat yield. Delay in planting after June 1 and the level of residual mineral N in the soil at planting had strong negative effects on the response to fertilizer and the optimal rate of fertilizer required. The results indicate that yields of irrigated wheat may be below the economic optimum because of sub-optimal applications of N. Other soil and management factors such as available soil P and number of irrigations also affected grain yield. At 1 3 sites low protein wheat (< 1 1.4�1~) was produced with all but the highest two rates of N fertilizer and at two sites even the highest rate produced low protein wheat. The effect of N fertilizer applied at planting on grain protein concentration was changed by the yield response to the fertilizer application. Grain protein concentration was curvilinearly related (R2 = 0.81) to relative grain yield (yield as a proportion of the maximum yield); grain protein was at its minimum at a relative yield of 0.5. Although heavy rates of N fertilizer at planting increased grain protein concentration on a few sites, usually these applications led to an inefficient use of N fertilizer; apparent incorporation of fertilizer N into grain decreased with increasing rate of fertilizer.


1992 ◽  
Vol 32 (4) ◽  
pp. 465 ◽  
Author(s):  
AD Doyle ◽  
RW Kingston

The effect of sowing rate (10-110 kg/ha) on the grain yield of barley (Hordeum vulgare L.) was determined from a total of 20 field experiments conducted in northern New South Wales from 1983 to 1986. Effects of sowing rate on kernel weight and grain protein percentage were also determined from 12 experiments conducted in 1985 and 1986. Two barley varieties were tested each year. In all years fallow plus winter rainfall was equal to or greater than average. Grain yield increased with higher sowing rates in most experiments, with the response curve reaching a plateau above 60-70 kg/ha. For 13 of the 40 variety x year combinations, grain yield fell at the highest sowing rates. Only in an experiment where lodging increased substantially with higher sowing rates was there a reduction in yield at a sowing rate of 60 kg/ha. The average sowing rate for which 5 kg grain was produced per kg of seed sown was 63 kg/ha. Grain protein percentage usually fell, and kernel weight invariably fell, with increasing sowing rate. Increasing sowing rates from the normal commercial rate of 35 kg/ha to a rate of 60 kg/ha typically increased grain yields by 100-400 kg/ha, decreased kernel weight by 0.4-2.0 mg, and decreased grain protein by up to 0.5 percentage points. In no case was the grain weight reduced to below malting specifications. It was concluded that sowing rates for barley in northern New South Wales should be increased to about 60 kg/ha.


2016 ◽  
Vol 11 (2) ◽  
pp. 107 ◽  
Author(s):  
Massimo Blandino ◽  
Federico Marinaccio ◽  
Amedeo Reyneri

The increasing demand for a high and homogeneous technological quality of common wheat (<em>Triticum aestivum</em> L.) points out the necessity of improving wheat with by a higher protein (GPC) and gluten content, strength of dough (W) and dough stability. Among the current crop practices, late-season nitrogen (N) fertilization, from heading to flowering, is generally considered the practice that has the most effects on the storage proteins and technological quality of the grain. In order to explore the influence late-season N application can have on the dough properties and on the formation of homogeneous lots in more detail, a research was set up between 2007 and 2013, over 6 growing seasons at different sites in North West Italy using the Bologna cultivar in each of the trials. Three different late-season N fertilization strategies were compared: T1, control without a late distribution of N; T2, foliar N fertilization at flowering; T3, top-dress granular soil fertilization at the beginning of heading. A randomized complete block experimental design with four replicates was adopted. The grain yield, GPC, W and P/L indexes were analyzed. Moreover, the rheological and enzymatic properties of the samples were studied using a Mixolab® analyser (Chòpin Technologies, Paris, France). Grain yield was found to be unaffected by the fertilization treatments, while the late N application (T2, T3) significantly increased GPC. Only the granular N fertilization (T3) increased the W index compared to T1, while the P/L index was not affected by any of the fertilization strategies. Furthermore, the T3 strategy was always more effective in reducing the variability of the W index than the T2 and the T1 strategies. Water absorption and dough development time were higher in T3, than in T1, while intermediate results were reached for T2. The effect of late-season N fertilization was also significant on the starch behaviour of the dough, as an increase in starch gelatinization and retrogradation was observed. In short, the top-dress granular N fertilizer applied at the beginning of heading (T3) led to a more constant increase in GPC and flour rheological quality than the foliar application. Moreover, the adoption of this fertilization strategy resulted in a reduction in qualitative variability under different environmental and soil conditions.


1982 ◽  
Vol 22 (115) ◽  
pp. 54 ◽  
Author(s):  
WM Strong

On the Darling Downs the growth and yield of a semi-dwarf wheat (cv. Oxley) under supplementary irrigation was increased by the application of up to 400 kg/ha of nitrogen (N) at planting. Nitrogen at 50 or 100 kg/ha applied at the boot stage to supplement 100 kg/ha applied at planting increased grain yield by 459 and 478 kg/ha, respectively. However, yields were still below those where all the N was applied at planting. In contrast, supplementary N (0, 25, 50 or 100 kg/ha) at flowering or after flowering generally did not increase grain yield. One exception to this was where only 50 kg/ha was applied at planting; an additional 100 kg/ha at flowering increased grain yield by 602 kg/ha. Applied at planting, more than 200 kg/ha of N was needed to produce premium grade wheat (i.e. protein content above 11.4%). To achieve this protein content where 100 kg/ha had been applied at planting an additional 100 kg/ha was needed at the boot stage or 50 kg/ha at flowering. Applied after flowering, up to 100 kg/ha of additional N produced wheat of a protein content too low to attract a premium payment. A similar quantity of N was assimilated whether the entire N application was applied at planting or where the application was split between planting and boot or flowering. Less N was assimilated when the application was split between planting and after flowering. More N was assimilated from soil than from foliar applications at the boot stage. Soil and foliar applications were equally effective at flowering in increasing the amount of N assimilated as well as the grain protein content. However, after flowering foliar application was the more effective method. The application of N at flowering to increase the protein content of this semi-dwarf cultivar is not an attractive commercial practice. The price ratio of premium to Australian Standard White wheat in recent years (<1.071 ) is less than that needed (1.0954-1.3013) to justify splitting the N application to lift grain protein content above 11.4% at the expense of yield.


1997 ◽  
Vol 48 (5) ◽  
pp. 635 ◽  
Author(s):  
C. J. Birch ◽  
S. Fukai ◽  
I. J. Broad

The effect of nitrogen application on the grain yield and grain protein concentration of barley was studied in 13 field trials covering a wide range of soil N conditions over 4 years at locations in south-eastern Queensland. The main objectives of the study were to quantify the response of barley to N application rate over a range of environmental conditions, and to explain the response in terms of soil mineral N, total N uptake, and N distribution in the plants. Barley made efficient use of N (60 kg grain/kg N) until grain yield reached 90% of maximum yield. Grain protein concentration did not increase to levels unacceptable for malting purposes until grain yield exceeded 85–90% of maximum yield. Nitrogen harvest index was generally high (above 0·75), and did not decrease until the total N supply exceeded that necessary for maximum grain yield. Rates of application of N for malting barley should be determined on the basis of soil analysis (nitrate-N) to 1 m depth and 90% of expected maximum grain yield, assuming that 17 kg N is taken up per tonne of grain produced. It can further be assumed that the crop makes full use of the nitrate N to 1 m present at planting, provided the soil is moist to 1 m. A framework relating grain yield to total N uptake, N harvest index, and grain N concentration is presented. Further, total N uptake of fertilised barley is related to N uptake without fertiliser, fertiliser application rate, and apparent N recovery. The findings reported here will be useful in the development of barley simulation models and decision support packages that can be used to aid N management.


1992 ◽  
Vol 32 (3) ◽  
pp. 383 ◽  
Author(s):  
AD Doyle ◽  
CC Leckie

Grain yield, protein, and nitrogen uptake responses are reported for 6 wheat fertiliser experiments in northern New South Wales which were representative of sites that were highly responsive, moderately responsive, and non-responsive to nitrogen (N) fertiliser applied at sowing. Apparent recoveries of applied N of 33-57% in the grain were recorded where grain yield was steeply increasing in response to additional applied N. Where yield increases were smaller in response to increments of N fertiliser, N recovery was 22-3096, but where further N application increased grain protein content but not grain yield, apparent recovery of additional fertiliser N fell below 20%. Apparent recovery was less than 10% in experiments where there was no yield response to N fertiliser. The implications for fertiliser recommendations are discussed relative to potential premium payment for wheat protein levels. It was concluded that established premium payments are too low to make N application an economic proposition to increase grain protein levels in the absence of grain yield responses.


Sign in / Sign up

Export Citation Format

Share Document