Effects of plant density on intercropped wheat and field beans in an organic farming system

1997 ◽  
Vol 128 (1) ◽  
pp. 59-71 ◽  
Author(s):  
H. A. J. BULSON ◽  
R. W. SNAYDON ◽  
C. E. STOPES

In field trials in 1987/88 near Pangbourne, England, wheat (Triticum aestivum) and field beans (Vicia faba) were grown in an organic farming system as sole crops and additive intercrops. The sole crops were grown at 25, 50, 75, 100 and 150% of the recommended density (RD) for conventionally grown crops. The intercrops consisted of all density combinations of wheat and beans from 25 to 100% RD in a factorial experiment. The grain yield of sole cropped wheat and beans increased significantly as their density was increased. The highest yield of both was achieved at 100% RD, indicating that the conventional recommendation was the optimum when applied to organically grown crops. Land equivalent ratio (LER) values for the intercrops were significantly greater than 1·0 when the wheat was sown at > 5% RD and beans at > 50% RD. The highest LER of 1·29 was achieved when wheat and beans were both sown at 75% RD. There was resource complementarity, expressed as relative yield total (RYT) > 1·0, in all of the density combinations. There was a significant decrease in resource complementarity with increasing wheat and bean density. The nitrogen content of the wheat grain and whole plant biomass was significantly increased when the density of beans in the intercrops was increased; this was reflected in a significant increase in grain protein at harvest. The total amount of N accumulated by the wheat, however, decreased with increasing bean density due to a reduction in the biomass of wheat. Beans also showed a significant increase in %N as the density of the other component increased and a decrease in total N accumulation due to reduced biomass. All of the intercrops accumulated more N than the sole cropped wheat, but did not exceed that accumulated by sole-cropped beans. The biomass of weeds was greater under beans than under wheat. Weed biomass in intercrops was significantly reduced when the density of wheat and beans was increased, resulting in a lower weed biomass in the intercrops than was achieved in either the sole cropped wheat or beans. The N content of weeds was significantly reduced with increasing wheat density but was significantly increased with increasing bean density. The total amount of N accumulated by weeds per unit area was reduced significantly by increasing the density of both components. The levels of disease on the wheat were low, but mildew (Erysiphe graminis) increased significantly as bean density increased. The incidence of chocolate spot (Botrytis fabae) increased significantly with increased bean density. The experiment demonstrated that it was possible to harvest the crop with a combine harvester and the wheat and beans can be planted separately mechanically, therefore this system is suited to mechanized agricultural systems.

2018 ◽  
Vol 2 (95) ◽  
pp. 78-81
Author(s):  
L.I. Shkarivska

The changes of the soil’s humus soil within the rural areas are investigated for the organic farming system. The most significant impact of organic agriculture on humus content over 55% was observed on soddy podzolic soils (V>75%), the lowest –7,5% on typical chernozem (V≈16%). Changes in the qualitative composition of humus for the introduction of various types of organic substrates are analyzed.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 209
Author(s):  
Maria Raimondo ◽  
Francesco Caracciolo ◽  
Concetta Nazzaro ◽  
Giuseppe Marotta

While there is growing recognition of the positive role played by organic farming in the reduction of the negative externalities due to conventional agriculture, there is uncertainty about the effect of the latter on the economic performance of the farms. In this scenario, the present paper aims at investigating the effect of organic farming on technical efficiency in Italian olive farms. A cross-section dataset was analyzed through the stochastic frontier function, where the adoption of organic farming was explicitly modeled. Then, to obtain an unbiased estimate of the impact of organic farming on technical efficiency, a propensity score matching method was implemented. The findings reveal that organic farming increases technical efficiency in Italian olive farms by approximately 10%. The highest impact of organic farming is observed in small farms. As for the propensity to become organic, we found that the production and the direct sales of a higher quality of gross marketable output, as well as the intensity of labor and machines, increase the probability to adopt organic farming. Conversely, farm localization, the availability of family labor, and financial capital discourage conversion to the organic farming system.


1993 ◽  
Vol 120 (1) ◽  
pp. 13-24 ◽  
Author(s):  
M. P. Tofinga ◽  
R. Paolini ◽  
R. W. Snaydon

SUMMARYWheat, barley and two morphologically contrasting cultivars of peas (leafy and semi-leafless) were grown in pure stands, at standard agricultural densities, and in additive mixtures of cereals with peas. The stands were grown in boxes in the field, and partitions were used to separate the effects of root and shoot interactions. The cereals and peas were either planted at the same time, or one species was planted 10 days before the other. The origin of the N present in each species was determined by applying N fertilizer labelled with 15N.Both cultivars of peas had greater shoot and root competitive abilities than wheat or barley, probably because of their larger seed size; leafy peas had greater shoot and root competitive abilities than semi-leafless peas. Sowing peas after cereals reduced their competitive ability.The relative yield total (RYT) of cereal-pea mixtures, based on total biomass, averaged 1·6 when only the root systems interacted, and 1·4 when only the shoot systems interacted, but did not differ significantly from 10 when both root and shoot systems interacted. RYT values were greater when peas were grown with wheat, rather than with barley, and when peas were sown at the same time as the cereals.Shoot competition from peas increased the N% of cereals, but substantially reduced their total N content, because biomass yield was reduced. Shoot competition from cereals had no effect on the N% of peas, and only slightly reduced their total N content. Shoot competition between cereals and peas had no significant effect upon the proportion of N derived from various sources by either cereals or peas.Root competition from peas significantly reduced both the N% and total N content of cereals. Root competition from cereals had little effect on the N% of peas, but significantly reduced their total N content and increased the proportion of N derived from rhizobial fixation from 76 to 94%. Since cereals and peas largely used different sources of N, resource complementarity for N was probably an important component of intercropping advantage, when the roots of cereals and peas shared soil resources.


2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Shahabuddin Saleh ◽  
Alam Anshary ◽  
Usman Made ◽  
Mahfudz Mahfudz ◽  
Muhammad Basir-Cyio

Author(s):  
Rita Pupalienė ◽  
Aušra Sinkevičienė ◽  
Darija Jodaugienė ◽  
Kristina Bajorienė

Sign in / Sign up

Export Citation Format

Share Document