A study of root and shoot interactions between cereals and peas in mixtures

1993 ◽  
Vol 120 (1) ◽  
pp. 13-24 ◽  
Author(s):  
M. P. Tofinga ◽  
R. Paolini ◽  
R. W. Snaydon

SUMMARYWheat, barley and two morphologically contrasting cultivars of peas (leafy and semi-leafless) were grown in pure stands, at standard agricultural densities, and in additive mixtures of cereals with peas. The stands were grown in boxes in the field, and partitions were used to separate the effects of root and shoot interactions. The cereals and peas were either planted at the same time, or one species was planted 10 days before the other. The origin of the N present in each species was determined by applying N fertilizer labelled with 15N.Both cultivars of peas had greater shoot and root competitive abilities than wheat or barley, probably because of their larger seed size; leafy peas had greater shoot and root competitive abilities than semi-leafless peas. Sowing peas after cereals reduced their competitive ability.The relative yield total (RYT) of cereal-pea mixtures, based on total biomass, averaged 1·6 when only the root systems interacted, and 1·4 when only the shoot systems interacted, but did not differ significantly from 10 when both root and shoot systems interacted. RYT values were greater when peas were grown with wheat, rather than with barley, and when peas were sown at the same time as the cereals.Shoot competition from peas increased the N% of cereals, but substantially reduced their total N content, because biomass yield was reduced. Shoot competition from cereals had no effect on the N% of peas, and only slightly reduced their total N content. Shoot competition between cereals and peas had no significant effect upon the proportion of N derived from various sources by either cereals or peas.Root competition from peas significantly reduced both the N% and total N content of cereals. Root competition from cereals had little effect on the N% of peas, but significantly reduced their total N content and increased the proportion of N derived from rhizobial fixation from 76 to 94%. Since cereals and peas largely used different sources of N, resource complementarity for N was probably an important component of intercropping advantage, when the roots of cereals and peas shared soil resources.

2020 ◽  
Vol 66 (No. 4) ◽  
pp. 183-189 ◽  
Author(s):  
Lu-Lu Meng ◽  
Jia-Dong He ◽  
Ying-Ning Zou ◽  
Qiang-Sheng Wu ◽  
Kamil Kuča

Glomalin released from arbuscular mycorrhizal fungi (AMF) has important roles in soil nutrient cycles, whereas contributing to glomalin-related soil protein (GRSP) fractions to soil nitrogen (N) is unknown. In this study, a two-chambered root-box that was divided into root chamber (root and mycorrhizal fungi hypha) and hypha chamber (free of the root) was used, and three AMF species including Diversispora epigaea, Paraglomus occultum, and Rhizoglomus intraradices were separately inoculated into the root chamber. Plant growth, soil total N, N content of purified GRSP fractions, and its contribution to soil total N, and leaf and root N contents were analysed. After four months, total biomass and root total length, surface area, and volume were improved by all AMF inoculations. AMF inoculations dramatically increased soil total N content in two chambers. The N content of purified easily extractable GRSP (EE-GRSP) and difficultly extractable GRSP (DE-GRSP) was 0.10 ± 0.01 mg/g and 0.16 ± 0.02 mg/g, respectively, accounted for 15.6 ± 1.6% and 18.1 ± 1.8% of soil total N, respectively. AMF inoculations stimulated the N accumulation in EE-GRSP and DE-GRSP, especially in the hypha chamber. It concluded that GRSP, especially DE-GRSP, acts as a soil N pool accounting for 33.8 ± 1.9% of soil total N in orchards.


1997 ◽  
Vol 128 (1) ◽  
pp. 59-71 ◽  
Author(s):  
H. A. J. BULSON ◽  
R. W. SNAYDON ◽  
C. E. STOPES

In field trials in 1987/88 near Pangbourne, England, wheat (Triticum aestivum) and field beans (Vicia faba) were grown in an organic farming system as sole crops and additive intercrops. The sole crops were grown at 25, 50, 75, 100 and 150% of the recommended density (RD) for conventionally grown crops. The intercrops consisted of all density combinations of wheat and beans from 25 to 100% RD in a factorial experiment. The grain yield of sole cropped wheat and beans increased significantly as their density was increased. The highest yield of both was achieved at 100% RD, indicating that the conventional recommendation was the optimum when applied to organically grown crops. Land equivalent ratio (LER) values for the intercrops were significantly greater than 1·0 when the wheat was sown at > 5% RD and beans at > 50% RD. The highest LER of 1·29 was achieved when wheat and beans were both sown at 75% RD. There was resource complementarity, expressed as relative yield total (RYT) > 1·0, in all of the density combinations. There was a significant decrease in resource complementarity with increasing wheat and bean density. The nitrogen content of the wheat grain and whole plant biomass was significantly increased when the density of beans in the intercrops was increased; this was reflected in a significant increase in grain protein at harvest. The total amount of N accumulated by the wheat, however, decreased with increasing bean density due to a reduction in the biomass of wheat. Beans also showed a significant increase in %N as the density of the other component increased and a decrease in total N accumulation due to reduced biomass. All of the intercrops accumulated more N than the sole cropped wheat, but did not exceed that accumulated by sole-cropped beans. The biomass of weeds was greater under beans than under wheat. Weed biomass in intercrops was significantly reduced when the density of wheat and beans was increased, resulting in a lower weed biomass in the intercrops than was achieved in either the sole cropped wheat or beans. The N content of weeds was significantly reduced with increasing wheat density but was significantly increased with increasing bean density. The total amount of N accumulated by weeds per unit area was reduced significantly by increasing the density of both components. The levels of disease on the wheat were low, but mildew (Erysiphe graminis) increased significantly as bean density increased. The incidence of chocolate spot (Botrytis fabae) increased significantly with increased bean density. The experiment demonstrated that it was possible to harvest the crop with a combine harvester and the wheat and beans can be planted separately mechanically, therefore this system is suited to mechanized agricultural systems.


1998 ◽  
Vol 28 (3) ◽  
pp. 396-401 ◽  
Author(s):  
Simon M Landhäusser ◽  
Victor J Lieffers

Three experiments were conducted to examine the effects of Calamagrostis canadensis (Michx.) Beauv. on the growth of Populus tremuloides Michx. Containerized seedlings of P. tremuloides were transplanted into large pots and subjected to (1) three soil temperatures (20, 12, and 6°C), (2) root competition with C. canadensis, or (3) presence or absence of C. canadensis litter, each at two nutrient regimes. In the first experiment, significant differences (p = 0.0001) in pre- and neo-formed leaf area and root and shoot dry weights were observed for plants subjected to the three different soil temperatures. In experiment two, the presence of C. canadensis significantly (p < 0.001) reduced total biomass, plant height, and root collar calliper of P. tremuloides. In the third experiment, a significant interaction (p = 0.027) between C. canadensis litter and nutrient regime was observed, with the greatest inhibitory effect on P. tremuloides growth resulting from litter at the low nutrient regime. Low soil temperature had the strongest negative effect on P. tremuloides of the four factors investigated. However, direct competition with C. canadensis, low nutrient conditions, and C. canadensis litter likely would add to the growth suppression of P. tremuloides by this grass. The results of this study have significant implications for the management of P. tremuloides after harvesting.


2013 ◽  
Vol 93 (6) ◽  
pp. 1441-1456 ◽  
Author(s):  
Ana Paula Maria Cavalcanti Valença ◽  
Paulo Jorge Parreira dos Santos

Macrobenthic data from estuaries along the Pernambuco coast in north-eastern Brazil were analysed to evaluate the effect of sieve mesh size (1.0 mm × 0.5 mm) and sampling depth (0–10 cm × 0–20 cm) on the description of infaunal communities, in an attempt to discuss standardized sampling procedures for different ecological studies objectives in these ecosystems. In general, the difference in sieve retention was less evident for biomass but was important for abundance: the 1.0 mm sieve retained only 27% of total individuals but 77% of total biomass. Regarding sampling depth, the 0–10 cm layer contained most individuals (94%) but contributed just 64% of the overall biomass. Although no strong differences in community structure were observed at most sites with the use of different sieves, the correlations among community dissimilarity using different meshes with environmental parameters (organic matter, total-N and microphytobenthos) indicated that the use of the 0.5 mm sieve will allow a better evaluation of the status of these estuaries. The results also highlight the importance of taking the vertical distribution of tropical macrofauna into account for quantitative estimates: for taxa composition and abundance the top layer is clearly essential, whereas for biomass the deeper layers should also be considered.


2019 ◽  
Vol 11 (5) ◽  
pp. 1347 ◽  
Author(s):  
Jie Liu ◽  
Jumei Li ◽  
Yibing Ma ◽  
Enli Wang ◽  
Qiong Liang ◽  
...  

In spite of the importance of N management in agricultural production, closing the full nitrogen balance remains a challenge, mainly due to the uncertainties in both fluxes of nitrogen input and output. We analyzed N deposition and its influence on crop productivity and field nitrogen balance based on data from three of 15 years (1990–2005) of experiments in North China. The results showed that the average annual nitrogen deposition was 76, 80, and 94 kg N/ha at Changping, Zhengzhou, and Yangling in a wheat-maize rotation system, respectively. The deposited N could support a corresponding total biomass production (wheat plus maize) of 9.6, 10.6, and 8.8 Mg/ha with a total grain yield of 3.8, 4.8, and 3.7 Mg/ha, however, that did not cause a further decline in soil organic matter. N fertilizer application could increase total biomass (grain) by 244% (259%) and 74% (119%) for wheat and maize, respectively. Under optimal N management, N deposition accounted for 17–21% of the total N inputs, which affected significantly the recovery efficiency of applied N. N deposition showed a significant spatial variation in terms of the fraction of dry and wet depositions. On an annual average, N deposition roughly balanced out N losses due to NH3 volatilization and N2O loss from nitrification and denitrification. NH3 volatilization and NO3−-N leaching each accounted for 16–20% of the total N outputs. A system modeling approach is recommended to investigate the spatial variation of N leaching as affected by climatic conditions, and to fully account for the nitrogen fluxes. The N deposition derived from this study can be used as the background N input into the wheat-maize double cropping system for N balance.


1999 ◽  
Vol 133 (3) ◽  
pp. 263-274 ◽  
Author(s):  
J. VOS

In four field experiments, the effects of single nitrogen (N) applications at planting on yield and nitrogen uptake of potato (Solanum tuberosum L.) was compared with two or three split applications. The total amount of N applied was an experimental factor in three of the experiments. In two experiments, sequential observations were made during the growing season. Generally, splitting applications (up to 58 days after emergence) did not affect dry matter (DM) yield at maturity and tended to result in slightly lower DM concentration of tubers, whereas it slightly improved the utilization of nitrogen. Maximum haulm dry weight and N content were lower when less nitrogen was applied during the first 50 days after emergence (DAE). The crops absorbed little extra nitrogen after 60 DAE (except when three applications were given). Soil mineral N (0–60 cm) during the first month reflected the pattern of N application with values up to 27 g/m2 N. After 60 DAE, soil mineral N was always around 2–5 g/m2. The efficiency of N utilization, i.e. the ratio of the N content of the crop to total N available (initial soil mineral N+deposition+net mineralization) was 0·45 for unfertilized controls. The utilization of fertilizer N (i.e. the apparent N recovery) was generally somewhat improved by split applications, but declined with the total amount of N applied (range 0·48–0·72). N utilization and its complement, possible N loss, were similar for both experiments with sequential observations. Separate analysis of the movement of Br− indicated that some nitrate can be washed below 60 cm soil depth due to dispersion during rainfall. The current study showed that the time when N application can be adjusted to meet estimated requirements extends to (at least) 60 days after emergence. That period of time can be exploited to match the N application to the actual crop requirement as it changes during that period.


2002 ◽  
Vol 82 (3) ◽  
pp. 435-444 ◽  
Author(s):  
S. M. McGinn ◽  
K. M. Koenig ◽  
T. Coates

Ammonia loss from livestock manure is of special concern because it contributes to odour, can impact non-targeted environments through atmospheric deposition, and represents a potential loss of available nitrogen in manure used as fertilizer for crop growth. Our study investigated the effect of three barley-based diets on manure composition and the emissions of ammonia and volatile fatty acids (VFA) from beef feedlot manure. The results of our study suggest that the metabolizable protein requirements of heavyweight feedlot cattle (400 to 550 kg) were met when finished on a barley grain and barley silage diet [12.9% crude protein (CP)]. Therefore, the ability to reduce total N content of manure or manipulate the route of N excretion is limited, unless lower protein ingredients, such as corn silage or cereal straw, were incorporated into the diet to lower the basal diet CP concentration. There was no relationship between protein level and animal weight gain in our study. There was a positive relationship (P < 0.05) between level of intake protein and ammonium-N content of the surface-sampled pen manure. However, chamber data suggested that the higher ammonium-N content of manure did not translate to any significant difference in ammonia emissions, although the lowest emission rate for surface manure coincided with the lowest protein level. There was also no significant difference in VFA emission related to diet treatments. Key words: Ammonia, volatile fatty acid, odour intensity, cattle, manure, diet


Soil Research ◽  
1986 ◽  
Vol 24 (1) ◽  
pp. 1 ◽  
Author(s):  
AR Mosier ◽  
WS Meyer ◽  
FM Melhuish

A study using 15N~labelled fertilizer was initiated in a lysimeter facility to quantify the amount of N assimilated by maize plants and that which remained in the soil at the end of a cropping season. Maize was planted in 0.43 m2 by 1.35 m deep intact Marah clay loam soil cores removed from an improved pasture in mid-October 1983. Two irrigation treatments, flood-impounding water on the soil for up to 72 h, and control-applying enough water to prevent plant stress without ponding, were employed. The crop was harvested in early April 1984 and the amount of fertilizer- and soil-derived N in the plant and remaining in the soil was determined. Grain yields were reduced about 33% by flood irrigation. Although about 30 kg N ha-1 more fertilizer N was lost from the flood-irrigated system, the difference in N recovery between the flood- and control-irrigated soils was not sufficient to account for the reduced grain yield. Flood-irrigated plants were less efficient in transporting fertilizer N to the seed than were control irrigation plants. The data suggest that the reduced seed yield and total N content of maize plants grown under flood irrigation was metabolically controlled rather than being derived from a difference in soil mineral N content compared with control-irrigated soils.


1995 ◽  
Vol 124 (1) ◽  
pp. 17-25 ◽  
Author(s):  
L. J. Wyland ◽  
L. E. Jackson ◽  
K. F. Schulbach

SUMMARYWinter non-leguminous cover crops are included in crop rotations to decrease nitrate (NO3-N) leaching and increase soil organic matter. This study examined the effect of incorporating a mature cover crop on subsequent N transformations. A field trial containing a winter cover crop of Merced rye and a fallow control was established in December 1991 in Salinas, California. The rye was grown for 16 weeks, so that plants had headed and were senescing, resulting in residue which was difficult to incorporate and slow to decompose. Frequent sampling of the surface soil (0–15 cm) showed that net mineralizable N (anaerobic incubation) rapidly increased, then decreased shortly after tillage in both treatments, but that sustained increases in net mineralizable N and microbial biomass N in the cover-cropped soils did not occur until after irrigation, 20 days after incorporation. Soil NO3-N was significantly reduced compared to winter-fallow soil at that time. A 15N experiment examined the fate of N fertilizer, applied in cylinders at a rate of 12 kg 15N/ha at lettuce planting, and measured in the soil, microbial biomass and lettuce plants after 32 days. In the cover-cropped soil, 59% of the 15N was recovered in the microbial biomass, compared to 21% in the winter-bare soil. The dry weight, total N and 15N content of the lettuce in the cover-cropped cylinders were significantly lower; 28 v. 39% of applied 15N was recovered in the lettuce in the cover-cropped and winter-bare soils, respectively. At harvest, the N content of the lettuce in the cover-cropped soil remained lower, and microbial biomass N was higher than in winter-bare soils. These data indicate that delayed cover crop incorporation resulted in net microbial immobilization which extended into the period of high crop demand and reduced N availability to the crop.


1987 ◽  
Vol 67 (3) ◽  
pp. 687-692 ◽  
Author(s):  
A. F. MACKENZIE ◽  
J. S. TOMAR

Retention of nitrogen in manure to be used for crop production and to reduce environmental pollution is an essential management component. The effects of monocalcium phosphate monohydrate (MCPM) and aeration on N retention in liquid hog (Sus scrofa domesticus) manure (LHM) were investigated under laboratory conditions. The manure received 0, 20 or 40 g of MCPM kg−1 of LHM (0, 250 or 500 g MCPM kg−1 manure solids) and was incubated over a 15-d period with and without aeration. Manure pH decreased with added MCPM and then remained constant, but pH increased with time when MCPM was not added. Losses of NH3 from hog manure were significantly reduced by added MCPM, but increased significantly with aeration where MCPM was not added to the manure. The NH4-N content of LHM was higher where MCPM was added to the manure. Conversely, the NH4-N content tended to decrease with aeration in the absence of MCPM. Total N content of LHM was significantly decreased where MCPM was not added to the manure. Aeration had no significant effect on total N. It was concluded that addition of MCPM can increase the NH4-N content of LHM by decreasing NH3-N losses through acidification of the manure. Key words: Aeration, Ca(H2PO4)2∙H2O, hog manure, pH reduction, NH3 loss


Sign in / Sign up

Export Citation Format

Share Document