Impact of industrial cream heat treatments on the protein composition of the milk fat globule membrane

2020 ◽  
Vol 87 (1) ◽  
pp. 89-93
Author(s):  
Steffen F. Hansen ◽  
Bjørn Petrat-Melin ◽  
Jan T. Rasmusen ◽  
Lotte B. Larsen ◽  
Lars Wiking

AbstractThe impact of cream processing on milk fat globule membrane (MFGM) was assessed in an industrial setting for the first time. Three creams and their derived MFGM fractions from different stages of the pasteurization procedure at a butter dairy were investigated and compared to a native control as well as a commercial MFGM fraction. The extent of cross-linking of serum proteins to MFGM proteins increased progressively with each consecutive pasteurization step. Unresolved high molecular weight aggregates were found to consist of both indigenous MFGM proteins and β-lactoglobulin as well as αs1- and β-casein. With regards to fat globule stability and in terms of resistance towards coalescence and flocculation after cream washing, single-pasteurized cream exhibited reduced sensitivity to cream washing compared to non- and double-pasteurized creams. Inactivation of the agglutination mechanism and the increased presence of non-MFGM proteins may determine this balance between stable and non-stable fat globules.

Dairy ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 202-217
Author(s):  
Michele Manoni ◽  
Donata Cattaneo ◽  
Sharon Mazzoleni ◽  
Carlotta Giromini ◽  
Antonella Baldi ◽  
...  

Milk lipids are composed of milk fat globules (MFGs) surrounded by the milk fat globule membrane (MFGM). MFGM protects MFGs from coalescence and enzymatic degradation. The milk lipid fraction is a “natural solvent” for macronutrients such as phospholipids, proteins and cholesterol, and micronutrients such as minerals and vitamins. The research focused largely on the polar lipids of MFGM, given their wide bioactive properties. In this review we discussed (i) the composition of MFGM proteome and its variations among species and phases of lactation and (ii) the micronutrient content of human and cow’s milk lipid fraction. The major MFGM proteins are shared among species, but the molecular function and protein expression of MFGM proteins vary among species and phases of lactation. The main minerals in the milk lipid fraction are iron, zinc, copper and calcium, whereas the major vitamins are vitamin A, β-carotene, riboflavin and α-tocopherol. The update and the combination of this knowledge could lead to the exploitation of the MFGM proteome and the milk lipid fraction at nutritional, biological or technological levels. An example is the design of innovative and value-added products, such as MFGM-supplemented infant formulas.


2019 ◽  
Vol 86 (3) ◽  
pp. 374-376 ◽  
Author(s):  
Vitaly L. Spitsberg ◽  
Liza Ivanov ◽  
Vladimir Shritz

AbstractIn this Research Communication we present a study of the effect of Ca-binding salts on the recovery of milk fat globule membrane (MFGM) from buttermilk. Sodium phosphate buffer was used for the purpose of MFGM recovery from buttermilk for the first time and we showed that 0.1 M buffer at pH 7.2 was the most effective for the recovery of MFGM. The fact of high efficacy of sodium phosphate buffer in recovery of MFGM from buttermilk allowed us to suggest that MFGM in buttermilk is present in association with casein through Ca- bridges formed between phospholipids of MFGM and phosphate groups of casein, primarily with k-casein as the peripheral protein of casein micelles.


2020 ◽  
Vol 22 (16) ◽  
pp. 5345-5356 ◽  
Author(s):  
Apratim Jash ◽  
Ali Ubeyitogullari ◽  
Syed S. H. Rizvi

Inspired by the heat stability of milk, where fat globules are coated by the milk fat globule membrane (MFGM), heat stable liposomes loaded with multivitamins were successfully synthesized from MFGM phospholipid concentrate.


2018 ◽  
Vol 81 ◽  
pp. 35-41 ◽  
Author(s):  
Steffen F. Hansen ◽  
Bjørn Petrat-Melin ◽  
Jan T. Rasmussen ◽  
Lotte B. Larsen ◽  
Marie S. Ostenfeld ◽  
...  

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 762-762
Author(s):  
Angela Jaramillo-Ospina ◽  
Rosario Toro-Campos ◽  
Teresa Murguia-Peniche ◽  
Jennifer Wampler ◽  
Steven Wu ◽  
...  

Abstract Objectives Bovine milk fat globule membrane (bMFGM) added in routine infant formula supports normal growth and safety through 24 mo of age in term infants. The impact on micronutrients and glucose-related biomarkers is assessed here. Methods In this double-blind, randomized, controlled trial, formula-fed infants were enrolled (<120 days of age) and randomized to receive a standard cow´s milk-based infant formula (SF, n = 174) or a similar formula with added whey protein-lipid concentrate (5 g/L; bMFGM; EF n = 173); exclusively breastfed infants were enrolled as a reference (HM, n = 235). In 50% of infants (chosen at random), parents agreed to blood collection (2–4 h fasting) at baseline, 6, 12, and 24 mo of age. Serum micronutrients (zinc, iron, ferritin, transferrin receptor) and glucose-related biomarkers (glucose, insulin, HOMA-IR [Homeostatic Model Assessment-Insulin Resistance], IGF-1) were analyzed. Results At baseline, significant differences in markers of iron status (serum iron, ferritin) and glucose-related biomarkers (glucose, HOMA-IR, and IGF-1) were detected between HM and study formula groups. At 6 and 12 mo, no differences in any measure were detected between study formula groups. Serum iron and ferritin at 12 mo as well as glucose-related biomarkers at 6 mo (insulin, HOMA-IR, IGF-1) and 12 mo (IGF-1 only) were lower in the HM vs study formula groups. By 24 mo, micronutrients and glucose-related biomarkers were similar between study formula groups (with the exception of significantly lower serum iron in the SF group); for HM vs study formula groups, differences included significantly lower zinc and IGF-1. Conclusions Patterns of micronutrients and glucose-related biomarkers were similar through two years of age in infants who received formula through one year. This study add to the body of data available for glucose-related biomarkers in children at two years of age and younger. Funding Sources The study was funded by Mead Johnson Nutrition (MJN). TMP, SSW, and JLW are currently, and CLB was previously employed by MJN.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1251 ◽  
Author(s):  
Michele Manoni ◽  
Chiara Di Lorenzo ◽  
Matteo Ottoboni ◽  
Marco Tretola ◽  
Luciano Pinotti

Milk is a lipid-in-water emulsion with a primary role in the nutrition of newborns. Milk fat globules (MFGs) are a mixture of proteins and lipids with nutraceutical properties related to the milk fat globule membrane (MFGM), which protects them, thus preventing their coalescence. Human and bovine MFGM proteomes have been extensively characterized in terms of their formation, maturation, and composition. Here, we review the most recent comparative proteomic analyses of MFGM proteome, above all from humans and bovines, but also from other species. The major MFGM proteins are found in all the MFGM proteomes of the different species, although there are variations in protein expression levels and molecular functions across species and lactation stages. Given the similarities between the human and bovine MFGM and the bioactive properties of MFGM components, several attempts have been made to supplement infant formulas (IFs), mainly with polar lipid fractions of bovine MFGM and to a lesser extent with protein fractions. The aim is thus to narrow the gap between human breast milk and cow-based IFs. Despite the few attempts made to date, supplementation with MFGM proteins seems promising as MFGM lipid supplementation. A deeper understanding of MFGM proteomes should lead to better results.


2016 ◽  
Vol 59 ◽  
pp. 52-61 ◽  
Author(s):  
Wolfgang Holzmüller ◽  
Magdalena Müller ◽  
David Himbert ◽  
Ulrich Kulozik

Sign in / Sign up

Export Citation Format

Share Document