Beating of a circular cylinder mounted as an inverted pendulum

2008 ◽  
Vol 610 ◽  
pp. 217-247 ◽  
Author(s):  
A. VOORHEES ◽  
P. DONG ◽  
P. ATSAVAPRANEE ◽  
H. BENAROYA ◽  
T. WEI

This paper contains temporally and spatially resolved flow visualization and DPIV measurements characterizing the frequency–amplitude response and three-dimensional vortex structure of a circular cylinder mounted like an inverted pendulum. Two circular cylinders were examined in this investigation. Both were 2.54 cm in diameter and ~140 cm long with low mass ratios, m* = 0.65 and 1.90, and mass–damping ratios, m*ζ = 0.038 and 0.103, respectively. Frequency–amplitude response analysis was done with the lighter cylinder while detailed wake structure visualization and measurements were done using the slightly higher-mass-ratio cylinder. Experiments were conducted over the Reynolds number range 1900≤Re≤6800 corresponding to a reduced velocity range of 3.7 ≤ U* ≤ 9.6. Detailed examination of the upper branch of the synchronization regime permitted, for the first time, the identification of short-time deviations in cylinder oscillation and vortex-shedding frequencies that give rise to beating behaviour. That is, while long-time averages of cylinder oscillation and vortex-shedding frequencies are identical, i.e. synchronized, it is shown that there is a slight mismatch between these frequencies over much shorter periods when the cylinder exhibits quasi-periodic beating. Data are also presented which show that vortex strength is also modulated from one cylinder oscillation to the next. Physical arguments are presented to explain both the origins of beating as well as why the quasi-periodicity of the beating envelopes becomes irregular; it is believed that this result may be generalized to a broader class of fluid–structure interactions. In addition, observations of strong vertical flows associated with the Kármán vortices developing 2–3 diameters downstream of the cylinder are presented. It is hypothesized that these three-dimensionalities result from both the inverted pendulum motion as well as free-surface effects.

Author(s):  
V. Tamimi ◽  
M. Zeinoddini ◽  
A. Bakhtiari ◽  
M. Golestani

In this paper results from simulating the vortex shedding phenomena behind a fixed tapered circular cylinder, at relatively high Reynolds numbers, are reported. Ansys-CFX computational fluid dynamics model, based on solving three-dimensional (3D) incompressible transient Navier Stokes equations, is employed for this purpose. The geometries applied in the models resemble those used in wind tunnel experiments by other researchers. The taper slope along the cylinder span is uniform with a tangent of 24:1. The diameter at mid-span of the cylinder equals to 0.0389 m. The Reynolds number (based on the mid-span diameter) is around 29,000. The computational model has first been calibrated against experiments for uniform 3D cylinders as well as results from a Direct Numerical Simulation of turbulent wake with vortex shedding past a uniform circular cylinder, as obtained by other researchers. The main flow characteristics for tapered cylinders such as vortex dislocations and splitting, cellular vortex shedding, oblique vortex shedding and the variation of the vorticity patterns along the tapered cylinder could be obtained from the simulations.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
C. Reichel ◽  
K. Strohmeier

In many technical fields, for example, in heat exchanger design, circular cylinders are involved in fluid structure interaction problems. Therefore, correct fluid forces are needed. Direct numerical simulation or large eddy simulation are too time expensive, but great errors can occur if fluid forces are evaluated with mainstream statistical turbulence models. In this paper, several models are applied to flow around a circular cylinder in the Reynolds number range from 500 up to 106. Mainly 2D simulations are performed. Additionally, calculations are performed to evaluate the influence of three dimensional modeling. The incorrect prediction of laminar to turbulent transition is identified as the main reason for the misprediction of flow forces with common statistical turbulence models. It is demonstrated that improvements are possible with available transition models. Although no grid independence in spatial direction could be achieved, the results indicate that 3D calculations may abolish remaining deviations between calculated and measured force coefficients. (Most of the data contained within this paper have been presented at the 2005 ASME PVPD Conference in Denver, Colorado. Although the title of the paper has not been changed, some newer results have been added.)


1980 ◽  
Vol 101 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Masaru Kiya ◽  
Hisataka Tamura ◽  
Mikio Arie

The frequency of vortex shedding from a circular cylinder in a uniform shear flow and the flow patterns around it were experimentally investigated. The Reynolds number Re, which was defined in terms of the cylinder diameter and the approaching velocity at its centre, ranged from 35 to 1500. The shear parameter, which is the transverse velocity gradient of the shear flow non-dimensionalized by the above two quantities, was varied from 0 to 0·25. The critical Reynolds number beyond which vortex shedding from the cylinder occurred was found to be higher than that for a uniform stream and increased approximately linearly with increasing shear parameter when it was larger than about 0·06. In the Reynolds-number range 43 < Re < 220, the vortex shedding disappeared for sufficiently large shear parameters. Moreover, in the Reynolds-number range 100 < Re < 1000, the Strouhal number increased as the shear parameter increased beyond about 0·1.


2019 ◽  
Vol 870 ◽  
pp. 419-432 ◽  
Author(s):  
G. Agbaglah ◽  
C. Mavriplis

The flow in the near wake of a square cylinder at Reynolds numbers of 205 and 225, corresponding to three-dimensional wake instability modes $A$ and $B$, respectively, and that of the square’s circumscribed circular cylinder are examined by using three-dimensional Navier–Stokes numerical simulations. At small times, prior to the streamwise vortex shedding, a self-similar velocity is observed in the wake and no significant difference is observed in the dynamics of the flows past the square and the circular cylinders. The exponential growth of the three-dimensional instability reaches a saturation regime during this early time for the considered Reynolds numbers. Vortical structures in the wake at long times and shedding frequencies are very close for the square and the circular cylinders. The flow separation on the forward top and bottom corners of the square cylinder have the effect of increasing its effective width, making it comparable with the diameter of the circumscribed circular cylinder. Thus, Floquet multipliers and modes of the associated three-dimensional instabilities are shown to be very close for the two cylinders when using the circumscribed circular cylinder as the basis for a characteristic length scale. Most importantly, the wavenumber with the maximum growth rate, for modes $A$ and $B$, is approximately identical for the two cylinders.


2016 ◽  
Vol 798 ◽  
pp. 371-397 ◽  
Author(s):  
José P. Gallardo ◽  
Helge I. Andersson ◽  
Bjørnar Pettersen

We investigate the early development of instabilities in the oscillatory viscous flow past cylinders with elliptic cross-sections using three-dimensional direct numerical simulations. This is a classical hydrodynamic problem for circular cylinders, but other configurations have received only marginal attention. Computed results for some different aspect ratios ${\it\Lambda}$ from 1 : 1 to 1 : 3, all with the major axis of the ellipse aligned in the main flow direction, show good qualitative agreement with Hall’s stability theory (J. Fluid Mech., vol. 146, 1984, pp. 347–367), which predicts a cusp-shaped curve for the onset of the primary instability. The three-dimensional flow structures for aspect ratios larger than 2 : 3 resemble those of a circular cylinder, whereas the elliptical cross-section with the lowest aspect ratio of 1 : 3 exhibits oblate rather than tubular three-dimensional flow structures as well as a pair of counter-rotating spanwise vortices which emerges near the tips of the ellipse. Contrary to a circular cylinder, instabilities for an elliptic cylinder with sufficiently high eccentricity emerge from four rather than two different locations in accordance with the Hall theory.


2011 ◽  
Vol 680 ◽  
pp. 459-476 ◽  
Author(s):  
PRANESH MURALIDHAR ◽  
NANGELIE FERRER ◽  
ROBERT DANIELLO ◽  
JONATHAN P. ROTHSTEIN

Superhydrophobic surfaces have been shown to produce significant drag reduction for both laminar and turbulent flows of water through large- and small-scale channels. In this paper, a series of experiments were performed which investigated the effect of superhydrophobic-induced slip on the flow past a circular cylinder. In these experiments, circular cylinders were coated with a series of superhydrophobic surfaces fabricated from polydimethylsiloxane with well-defined micron-sized patterns of surface roughness. The presence of the superhydrophobic surface was found to have a significant effect on the vortex shedding dynamics in the wake of the circular cylinder. When compared to a smooth, no-slip cylinder, cylinders coated with superhydrophobic surfaces were found to delay the onset of vortex shedding and increase the length of the recirculation region in the wake of the cylinder. For superhydrophobic surfaces with ridges aligned in the flow direction, the separation point was found to move further upstream towards the front stagnation point of the cylinder and the vortex shedding frequency was found to increase. For superhydrophobic surfaces with ridges running normal to the flow direction, the separation point and shedding frequency trends were reversed. Thus, in this paper we demonstrate that vortex shedding dynamics is very sensitive to changes of feature spacing, size and orientation along superhydrophobic surfaces.


1969 ◽  
Vol 37 (3) ◽  
pp. 577-585 ◽  
Author(s):  
P. W. Bearman

The flow around a circular cylinder has been examined over the Reynolds number range 105 to 7·5 × 105, Reynolds number being based on cylinder diameter. Narrow-band vortex shedding has been observed up to a Reynolds number of 5·5 × 105, i.e. well into the critical régime. At this Reynolds number the Strouhal number reached the unusually high value of 0·46. Spectra of the velocity fluctuations measured in the wake are presented for several values of Reynolds number.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Xidong Zhang ◽  
Hulin Huang ◽  
Yin Zhang ◽  
Hongyan Wang

The predictions of flow structure, vortex shedding, and drag force around a circular cylinder are promoted by both academic interest and a wide range of practical situations. To control the flow around a circular cylinder, a magnetic obstacle is set upstream of the circular cylinder in this study for active controlling the separated flow behind bluff obstacle. Moreover, the changing of position, size, and intensity of magnetic obstacle is easy. The governing parameters are the magnetic obstacle width (d/D = 0.0333, 0.1, and 0.333) selected on cylinder diameter, D, and position (L/D) ranging from 2 to 11.667 at fixed Reynolds number Rel (based on the half-height of the duct) of 300 and the relative magnetic effect given by the Hartmann number Ha of 52. Results are presented in terms of instantaneous contours of vorticity, streamlines, drag coefficient, Strouhal number, pressure drop penalty, and local and average Nusselt numbers for various magnetic obstacle widths and positions. The computed results show that there are two flow patterns, one with vortex shedding from the magnetic obstacle and one without vortex shedding. The optimum conditions for drag reduction are L/D = 2 and d/D = 0.0333–0.333, and under these conditions, the pressure drop penalty is acceptable. However, the maximum value of the mean Nusselt number of the downstream cylinder is about 93% of that for a single cylinder.


2013 ◽  
Vol 25 (1) ◽  
pp. 014105 ◽  
Author(s):  
Ming Zhao ◽  
Jitendra Thapa ◽  
Liang Cheng ◽  
Tongming Zhou

Sign in / Sign up

Export Citation Format

Share Document