scholarly journals On satisfying the radiation condition in free-surface flows

2009 ◽  
Vol 624 ◽  
pp. 179-189 ◽  
Author(s):  
B. J. BINDER ◽  
J.-M. VANDEN-BROECK ◽  
F. DIAS

Binder & Vanden-Broeck (2005) showed there are no subcritical or critical solutions satisfying the radiation condition for steady flows past a flat plate. By using a weakly nonlinear analysis, it is shown that such flows exist for a curved plate. Fully nonlinear solutions are computed by a boundary integral equation method, and new nonlinear solutions for supercritical and generalized critical flows past a curved plate are presented.

1991 ◽  
Vol 230 ◽  
pp. 231-243 ◽  
Author(s):  
Walter Craig ◽  
Peter Sternberg

This article considers certain two-dimensional, irrotational, steady flows in fluid regions of finite depth and infinite horizontal extent. Geometrical information about these flows and their singularities is obtained, using a variant of a classical comparison principle. The results are applied to three types of problems: (i) supercritical solitary waves carrying planing surfaces or surfboards, (ii) supercritical flows past ship hulls and (iii) supercritical interfacial solitary waves in systems consisting of two immiscible fluids.


1999 ◽  
Vol 43 (01) ◽  
pp. 13-24
Author(s):  
M. Landrini ◽  
G. Grytøyr ◽  
O. M. Faltinsen

Fully nonlinear free-surface flows are numerically studied in the framework of the potential theory. The problem is formulated in terms of boundary integral equations which are solved by means of an arbitrary high-order boundary element method based on B-Spline representation of both the geometry and the fluid dynamic variables along the domain boundary. The solution is stepped forward in time either by following Lagrangian points attached to the free surface or by a less conventional scheme in which evolution equations for the B-Spline coefficients are integrated in time. Numerical examples for inner and outer free-surface flows are shown. The accuracy of the numerical solution is assessed either by checking mass and energy conservation or by comparing with reference solutions. Good results are generally obtained. Extended use of the developed algorithm to more applied problems in the context of naval hydrodynamics is now under development.


2013 ◽  
Vol 739 ◽  
pp. 1-21 ◽  
Author(s):  
Stephen L. Wade ◽  
Benjamin J. Binder ◽  
Trent W. Mattner ◽  
James P. Denier

AbstractThe free-surface flow of very steep forced and unforced solitary waves is considered. The forcing is due to a distribution of pressure on the free surface. Four types of forced solution are identified which all approach the Stokes-limiting configuration of an included angle of $12{0}^{\circ } $ and a stagnation point at the wave crests. For each type of forced solution the almost-highest wave does not contain the most energy, nor is it the fastest, similar to what has been observed previously in the unforced case. Nonlinear solutions are obtained by deriving and solving numerically a boundary integral equation. A weakly nonlinear approximation to the flow problem helps with the identification and classification of the forced types of solution, and their stability.


2018 ◽  
Vol 860 ◽  
pp. 711-738 ◽  
Author(s):  
Matvey Morozov ◽  
Sébastien Michelin

Experimental observations indicate that chemically active droplets suspended in a surfactant-laden fluid can self-propel spontaneously. The onset of this motion is attributed to a symmetry-breaking Marangoni instability resulting from the nonlinear advective coupling of the distribution of surfactant to the hydrodynamic flow generated by Marangoni stresses at the droplet’s surface. Here, we use a weakly nonlinear analysis to characterize the self-propulsion near the instability threshold and the influence of the droplet’s deformability. We report that, in the vicinity of the threshold, deformability enhances self-propulsion of viscous droplets, but hinders propulsion of drops that are roughly less viscous than the surrounding fluid. Our asymptotics further reveals that droplet deformability may alter the type of bifurcation leading to symmetry breaking: for moderately deformable droplets, the onset of self-propulsion is transcritical and a regime of steady self-propulsion is stable; while in the case of highly deformable drops, no steady flows can be found within the asymptotic limit considered in this paper, suggesting that the bifurcation is subcritical.


1994 ◽  
Vol 273 ◽  
pp. 109-124 ◽  
Author(s):  
J. Asavanant ◽  
J.-M. Vanden-Broeck

Steady two-dimensional flows past a parabolic obstacle lying on the free surface in water of finite depth are considered. The fluid is treated as inviscid and incompressible and the flow is assumed to be irrotational. Gravity is included in the free-surface condition. The problem is solved numerically by using boundary integral equation techniques. It is shown that there are solutions for which the flow is supercritical both upstream and downstream and others for which the flow is subcritical both upstream and downstream. These flows have continuous tangents at both ends of the obstacle at which separation occurs. For supercritical flows, there are up to three solutions corresponding to the same value of the Froude number when the obstacle is concave and up to two solutions when the obstacle is convex. For subcritical flows, there are solutions with waves behind the obstacle. As the Froude number decreases, these waves become steeper and the numerical calculations suggest that they, ultimately, reach limiting configurations with a sharp crest forming a 120° angle.


2007 ◽  
Vol 576 ◽  
pp. 475-490 ◽  
Author(s):  
B. J. BINDER ◽  
J.-M. VANDEN-BROECK

Free surface potential flows past disturbances in a channel are considered. Three different types of disturbance are studied: (i) a submerged obstacle on the bottom of a channel; (ii) a pressure distribution on the free surface; and (iii) an obstruction in the free surface (e.g. a sluice gate or a flat plate). Surface tension is neglected, but gravity is included in the dynamic boundary condition. Fully nonlinear solutions are computed by boundary integral equation methods. In addition, weakly nonlinear solutions are derived. New solutions are found when several disturbances are present simultaneously. They are discovered through the weakly nonlinear analysis and confirmed by numerical computations for the fully nonlinear problem.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 469
Author(s):  
Theofanis Karambas ◽  
Eva Loukogeorgaki

In the present work, a Boussinesq-type numerical model is developed for the simulation of nonlinear wave-heaving cylinder interaction. The wave model is able to describe the propagation of fully dispersive and weakly nonlinear waves over any finite water depth. The wave-cylinder interaction is taken into account by solving simultaneously an elliptic equation that determines the pressure exerted by the fluid on the floating body. The heave motion for the partially immersed floating cylinder under the action of waves is obtained by solving numerically the body’s equation of motion in the z direction based on Newton’s law. The developed model is applied for the case of a fixed and a free-floating circular cylinder under the action of regular waves, as well as for a free-floating cylinder undergoing a forced motion in heave. Results (heave and surge exciting forces, heave motions, and wave elevation) are compared with those obtained using a frequency domain numerical model, which is based on the boundary integral equation method.


1993 ◽  
Vol 37 (01) ◽  
pp. 1-7
Author(s):  
John S. Letcher

A feature of most implementations of Dawson's boundary-integral method for steady free-surface flows is the use of upstream finite-difference operators for the streamwise derivative occurring in the linearized free-surface boundary condition. An algebraic analysis of a family of candidate operators reveals their essential damping and dispersion error characteristics, which correlate well with their observed performance in two-dimensional example flows. Some new operators are found which perform somewhat better than Dawson's, but the general outlook for accurate results using difference operators is nevertheless bleak. It is shown that the calculation necessarily diverges as panel size is reduced, and a breakdown at higher speeds is also inevitable. More promise appears to lie in satisfying the radiation condition by several alternative ways, which are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document