An experimental study of an axisymmetric turbulent pulsed air jet

2009 ◽  
Vol 631 ◽  
pp. 23-63 ◽  
Author(s):  
I. CHOUTAPALLI ◽  
A. KROTHAPALLI ◽  
J. H. ARAKERI

An experimental study is carried out to elucidate the structure of a high Reynolds number (~105) turbulent pulsed jet. Particle image velocimetry measurements showed that the near flow field is dominated by a series of vortex rings with jet-like flows in between. The data show that the vortex rings convect at nearly constant speed of 0.6Uj(Uj: mean jet exit velocity) and the spacing between the rings assumes a value of about 0.6/St(St: Strouhal number=fd/Uj, wherefis the pulsing frequency anddis the nozzle exit diameter). With increasing Strouhal number, the rings are closely spaced and the flow tends to assume a steady jet character at five diameters downstream of the nozzle exit. At lower Strouhal numbers there is a distinct region of jet flow in between the rings. Many of the global characteristics, entrainment, mass and momentum flux are essentially determined by the strength and spacing of the rings which, in turn, depend onSt. We show that the increase in momentum is due to both increased momentum flux and overpressure at the exit in accordance with Krueger & Gharib (AIAA J., vol. 43 (4), 2005, p. 792). This increase in momentum comes at the expense of higher energy required to produce the jet. We also present results of organized and random components of the fluctuations and production of the random turbulence in a pulsed jet. The two regions of dominant turbulence production are identified with the ring and the trailing jet shear layers.

Author(s):  
P. J. Vermeulen ◽  
Wai Keung Yu

The mixing by an acoustically pulsed axisymmetrical air-jet, flowing into the atmosphere, has been studied by means of velocity and temperature profile measurements. The strength of the velocity pulsation imparted to the jet flow and of the associated toroidal vortices were also measured. The entrainment rate was increased by up to two times, with the majority of the extra entrainment occurring over the first five diameters downstream of the jet orifice, where toroidal vortices are formed and attain their greatest strength. The jet response depends on Strouhal number and appears to be optimum at about 0.25. The response starts to saturate at the limit of pulsation strength used.


Author(s):  
Hariyo P. S. Pratomo

Experimental results of a fully pulsed subsonic air jet issuing into the still surrounding air are reported in this paper. The intermittent flow containing a period of no flow between pulses due to the mechanically excitation was gauged by a single wire hot-wire anemometer operated in a constant temperature mode. A range of the Reynolds and Strouhal numbers of 1 × 104 < Re < 4 × 104 and 0.0064 < St < 0.0076 respectively was used to define the jets. Results of the traverse measurement agreed with earlier findings demonstrating strong effects of the excitation on the radial profiles of the mean axial velocity of the jet. Within the parameter ranges investigated, the pulsed jets were found to be significantly more spreading than steady jets. A less dispersive pulsed jet, however, appeared at a higher jet exit velocity. Strikingly, contradictory trends in the jet growth and entrainment at the higher and lower Reynolds number were seen as the lower Reynolds number does not produce a widening radial profile as a result of the increasing Strouhal number. From the axial measurements, the pulsed jets were characterized by the pulsed dominated- and high turbulence steady jet region in which their existences heavily relied on the magnitudes of the controlled parameters. A less fluctuating pulsed jet associated with the reduced magnitudes of aggregate turbulence intensity and relative turbulence energy however, appeared at an increased Strouhal number. Comparative studies with the existing results of non-circular orifice jets i.e cruciform, elliptic, and triangular jets are also reported to display the decay rates of centerline axial velocity and the spreading rates of the jets which benefit for the practical purposes.


2018 ◽  
Vol 90 (2) ◽  
pp. 452-460 ◽  
Author(s):  
Kannan B.T. ◽  
Panchapakesan N.R.

Purpose This study aims to investigate the effects of nozzle momentum flux distribution on the flow field characteristics. Design/methodology/approach The nozzle configuration consists of a central nozzle surrounded by four nozzles. All nozzles have the same diameter and constant separation between nozzles. OpenFOAM® is used for simulating the jet flow. Reynolds-averaged Navier-Stokes (RANS) equations are solved iteratively with a first-order closure for turbulence. Pitot-static tube with differential pressure transducer is used for mean velocity measurements. The comparison of computed results with experimental data shows similar trend and acceptable validation. Findings According to the results, the momentum flux distribution significantly alters the near field of multiple turbulent round jets. Highly non-linear decay region in the near field is found for the cases having higher momentum in the outer jets. As a result of merging, increased positive pressure is found in the mixing region. Higher secondary flows and wider mixing region are reported as a result of momentum transfer from axial to lateral directions by Reynolds stresses. Research limitations/implications The present study is limited to isothermal flow of air jet in air medium. Social implications Optimum momentum flux distribution in multijet injector of a combustor can reap better mixing leading to better efficiency and lesser environmental pollution. Originality/value As summary, the contributions of this paper in the field of turbulent jets are following: simulations for various momentum distribution cases have been performed. In all the cases, the flow at the nozzle exit is subsonic along with constant velocity profile. To simulate proper flow field, a large cylinder-type domain with structured grid is used with refinements toward the nozzle exit and jet axis. The results show that the non-linearity increases with increase in momentum of outer jets. Longer merging zones are reported for cases with higher momentum in outer nozzles using area-averaged turbulent kinetic energy. Similarly, wider mixing regions are reported using secondary flow parameter and visualizations.


2014 ◽  
Vol 757 ◽  
pp. 908-942 ◽  
Author(s):  
K. Matsuura ◽  
M. Nakano

AbstractThis study investigates the suppression of the sound produced when a jet, issued from a circular nozzle or hole in a plate, goes through a similar hole in a second plate. The sound, known as a hole tone, is encountered in many practical engineering situations. The mean velocity of the air jet $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}u_0$ was $6\text {--}12\ \mathrm{m}\ {\mathrm{s}}^{-1}$. The nozzle and the end plate hole both had a diameter of 51 mm, and the impingement length $L_{im}$ between the nozzle and the end plate was 50–90 mm. We propose a novel passive control method of suppressing the tone with an axisymmetric obstacle on the end plate. We find that the effect of the obstacle is well described by the combination ($W/L_{im}$, $h$) where $W$ is the distance from the edge of the end plate hole to the inner wall of the obstacle, and $h$ is the obstacle height. The tone is suppressed when backflows from the obstacle affect the jet shear layers near the nozzle exit. We do a direct sound computation for a typical case where the tone is successfully suppressed. Axisymmetric uniformity observed in the uncontrolled case is broken almost completely in the controlled case. The destruction is maintained by the process in which three-dimensional vortices in the jet shear layers convect downstream, interact with the obstacle and recursively disturb the jet flow from the nozzle exit. While regions near the edge of the end plate hole are responsible for producing the sound in the controlled case as well as in the uncontrolled case, acoustic power in the controlled case is much lower than in the uncontrolled case because of the disorganized state.


Author(s):  
Amir Allaf-Akbari ◽  
A. Gordon L. Holloway ◽  
Joseph Hall

The current experimental study investigates the effect of longitudinal core flow on the formation and structure of a trailing vortex. The vortex is generated using four airfoils connected to a central hub through which a jet flow is added to the vortex core. Time averaged vorticity, circumferential velocity, and turbulent kinetic energy are studied. The statistics of vortex wandering are identified and corrections applied to the vorticity distribution. The vortex generator used in this study was built on the basis of the design described by Beninati et al. [1]. It uses four NACA0012 airfoils connected to a central hub. The wings orientation can be adjusted such that each contributes to a strong trailing vortex on the center of the test section. The vortex generator also had the capability to deliver an air jet directed longitudinally through a hole in the hub at the joint of the airfoils. Tests were done without the jet and with the air jet at jet velocities of 10 and 20 m/s. Planar PIV was used to measure the velocity field in the vicinity of the vortex core. The measurements were taken at 3 chords behind the vortex generator.


1992 ◽  
Vol 114 (1) ◽  
pp. 46-54 ◽  
Author(s):  
P. J. Vermeulen ◽  
P. Grabinski ◽  
V. Ramesh

The mixing of an acoustically pulsed air jet with a confined hot crossflow has been assessed by temperature profile measurements. These novel experiments were designed to examine the effects of acoustic driver power and Strouhal number on jet structure, penetration, and mixing. The results showed that excitation produced strong changes in the measured temperature profiles. This resulted in significant increases in mixing zone size, penetration (at least 100 percent increase), and mixing, and the length to achieve a given mixed state was shortened by at least 70 percent. There was strong modification to the jet-wake region. The increase in jet penetration and mixing was saturating near 90 W, the largest driving power tested. The jet response as determined by penetration and mixing was optimum at a Strouhal number of 0.27. Overall, pulsating the jet flow significantly improved the jet mixing processes in a controllable manner.


Author(s):  
V.A. Altunin ◽  
K.V. Altunin ◽  
M.R. Abdullin ◽  
M.R. Chigarev ◽  
I.N. Aliev ◽  
...  

The paper discovers the reasons for the transfer of single-use or reusable ground, air, aerospace, and space-based engines and power plants from liquid hydrocarbon fuels and coolers to gaseous fuels, or rather, to liquefied natural gas methane. The study gives specific examples of creating a new technology and using methane fuel and fuel in the existing units; lists the classes of methane engines and power plants, among which the main ones being piston engines and internal combustion power plants, air-jet engines and power plants, liquid propellant rocket engines and power plants. Findings of research show that it is necessary to experimentally study gaseous methane, so that it could be effectively used in advanced single-use or reusable ground, air, aerospace and space-based engines and power plants, and their features should be taken into account when designing and developing new technologies. The study introduces the results of the experimental study of thermal processes in gaseous methane during its natural convection, describes the experimental base in detail, as well as the procedure for conducting experiments, and develops methods for calculating the heat transfer coefficient to gaseous methane relying on the research results.


Fuel ◽  
2012 ◽  
Vol 97 ◽  
pp. 390-399 ◽  
Author(s):  
Raul Payri ◽  
Antonio García ◽  
Vicent Domenech ◽  
Russell Durrett ◽  
Alejandro H. Plazas

2011 ◽  
Vol 6 (4) ◽  
pp. 51-54
Author(s):  
Evgeny Chinnov ◽  
Sergey Abdurakipov

An experimental study of thermal entry length in falling liquid films at high Reynolds numbers was performed with the use of field methods for thickness and temperature measuring. It was shown that the combination of the strong wave and thermocapillary effects leads to a significant decrease of thermal entry length


Sign in / Sign up

Export Citation Format

Share Document