Turbulent hydraulic jumps in a stratified shear flow

2010 ◽  
Vol 654 ◽  
pp. 305-350 ◽  
Author(s):  
S. A. THORPE

The conditions are examined in which stationary hydraulic jumps may occur in a continuously stratified layer of fluid of finite thickness moving over a horizontal boundary at z = 0 and beneath a deep static layer of uniform density. The velocity and density in the flowing layer are modified by turbulent mixing in the transition region. Entrainment of fluid from the overlying static layer is possible. Results are expressed in terms of a Froude number, Fr, characterizing the flow upstream of a transition. A Froude number, Fr*, is found that must be exceeded if conditions for the conservation of volume, mass and momentum fluxes across a hydraulic transition are satisfied. The condition Fr > Fr* is satisfied if the kinetic energy (KE) per unit area is greater than the potential energy per unit area, or if ∫0h [u2(z) − z2N2(z)]dz > 0, in a flow of speed u(z), in a layer of thickness h, with buoyancy frequency N(z). In the particular case (referred to as an ‘η profile’) of a flow with velocity and density that are constant if z ≤ ηh, decrease linearly if ηh ≤ z ≤ h, and in which u(z) = 0 and density is constant when z ≥ h, long linear internal waves can propagate upstream, ahead of a stationary hydraulic jump, for Fr in a range Fr* < Fr < Frc; here Frc is the largest Fr at which long waves, and wave energy, can propagate upstream in a flow with specified η. (Profiles other than the η profile exhibit similar properties.) It is concluded that whilst, in general, Fr > Fr* is a necessary condition for a hydraulic jump to occur, a more stringent condition may apply in cases where Fr* < Frc, i.e. that Fr > Frc.Physical constraints are imposed on the form of the flow downstream of the hydraulic jump or transition that relate, for example, to its static and dynamic stability and its stability against a further hydraulic jump. A further condition is imposed that relates the rate of dissipation of turbulent KE within a transition to the loss in energy flux of the flow in passing through the transition from the upstream side to the downstream. The constraints restrict solutions for the downstream flow to those in which the flux of energy carried downstream by internal waves is negligible and in which dissipation of energy occurs within the transition region.Although the problem is formulated in general terms, particular examples are given for η profiles, specifically when η = 0 and 0.4. The jump amplitude, the entrainment rate, the loss of energy flux and the shape of the velocity and density profiles in the flow downstream of a transition are determined when Fr > Fr* (and extending to those with Fr > Frc) in a number of extreme conditions: when the loss of energy flux in transitions is maximized, when the entrainment is maximized, when the jump amplitude is least and when loss of energy flux is maximized subject to the entrainment into the transitions being made zero. The ratio of the layer thickness downstream and upstream of a transition, the jump amplitude, is typically at least 1.4 when jumps are just possible (i.e. when Fr ~ Frc). The amplitude, entrainment and non-dimensionalized loss in energy flux increase with Fr in each of the extreme conditions, and the maximum loss in energy flux is close to that when the entrainment is greatest. The magnitude of the advective and diffusive fluxes across isopycnal surfaces, i.e. the diapycnal fluxes characterizing turbulent mixing in the transition region, also increase with Fr. Results are compared to those in which the velocity and density profiles downstream of the transition are similar to those upstream, and comparisons are also made with equivalent two-layer profiles and with a cosine-shaped profile with continuous gradients of velocity and density. If Fr is larger than a certain value (about 7 and > Frc, if η = 0.4), no solutions for flows downstream of a transition are found if there is no entrainment, implying that fluid must be entrained if a transition is to occur in flows with large Fr. Although the extreme conditions of loss of energy flux, jump amplitude or entrainment provide limits that it must satisfy, in general no unique downstream flow is found for a given flow upstream of a jump.

Author(s):  
Mohammad Zounemat-Kermani ◽  
Amin Mahdavi-Meymand

Abstract This study aims to evaluate the learning ability and performance of five meta-heuristic optimization algorithms in training forward and recurrent fuzzy-based machine learning models, such as ANFIS and RANFIS, to predict hydraulic jump characteristics, i.e., downstream flow depth (h2) and jump length (Lj). To meet this end, the firefly algorithm (FA), particle swarm algorithm (PSO), whale optimization algorithm (WOA), genetic algorithm (GA), and moth-flame optimization algorithm (MFO) are embedded with the fuzzy-based models, which represent the main contribution of this study. The analysis of the results of predicting hydraulic jump characteristics shows that the embedded ANFIS and RANFIS models are more accurate than the empirical relations proposed by the previous researchers. Comparing the performance of the embedded RANFISs and ANFISs methods in predicting Lj represents the superiority of the RANFIS models to the ANFISs. The results of the sensitivity analysis show that among the input independent parameters, flow discharge (Q) is the most important factor in predicting downstream flow depth in weak, oscillating, and steady hydraulic jumps (1.7 &lt; Froude number &lt; 9), while the upstream flow depth (h1) is more important than the other input parameters in strong hydraulic jumps (Froude number &gt; 9).


1999 ◽  
Vol 26 (3) ◽  
pp. 368-373 ◽  
Author(s):  
Helmut Stahl ◽  
Willi H Hager

Hydraulic jumps in conduits containing free surface flow have received practically no attention. This project was conducted to investigate experimentally the main features of such jumps and to obtain limits for conduit choking. The sequent depth ratio is determined in terms of the approach Froude number based on the conventional momentum approach. The lengths of the surface recirculation and aeration zones are also considered. Two different appearances of jumps are discussed and it is demonstrated that jumps with a small approach depth differ from those with a depth larger than about 30% of the conduit diameter. A choking condition is proposed for which conduits are subjected to full pipe downstream flow. Photographs are used to describe the main flow pattern. The results of this study are readily applicable for design.Key words: aeration, conduit choking, hydraulic jump, pipe flow, sequent depths.


1986 ◽  
Vol 163 ◽  
pp. 27-58 ◽  
Author(s):  
Laurence Armi

This is a theoretical and experimental study of the basic hydraulics of two flowing layers. Unlike single-layer flows, two-layer flows respond quite differently to bottom depth as opposed to width variations. Bottom-depth changes affect the lower layer directly and the upper layer only indirectly. Changes in width can affect both layers. In fact for flows through a contraction control two distinct flow configurations are possible; which one actually occurs depends on the requirements of matching a downstream flow. Two-layer flows can pass through internally critical conditions at other than the narrowest section. When the two layers are flowing in the same direction, the result is a strong coupling between the two layers in the neighbourhood of the control. For contractions a particularly simple flow then exists upstream in which there is no longer any significant interfacial dynamics; downstream in the divergent section the flow remains internally supercritical, causing one of the layers to be rapidly accelerated with a resulting instability at the interface. A brief discussion of internal hydraulic jumps based upon the energy equations as opposed to the more traditional momentum equations is included. Previous uniqueness problems are thereby avoided.


2017 ◽  
Vol 834 ◽  
pp. 125-148 ◽  
Author(s):  
S. A. Thorpe ◽  
J. Malarkey ◽  
G. Voet ◽  
M. H. Alford ◽  
J. B. Girton ◽  
...  

A model devised by Thorpe & Li (J. Fluid Mech., vol. 758, 2014, pp. 94–120) that predicts the conditions in which stationary turbulent hydraulic jumps can occur in the flow of a continuously stratified layer over a horizontal rigid bottom is applied to, and its results compared with, observations made at several locations in the ocean. The model identifies two positions in the Samoan Passage at which hydraulic jumps should occur and where changes in the structure of the flow are indeed observed. The model predicts the amplitude of changes and the observed mode 2 form of the transitions. The predicted dissipation of turbulent kinetic energy is also consistent with observations. One location provides a particularly well-defined example of a persistent hydraulic jump. It takes the form of a 390 m thick and 3.7 km long mixing layer with frequent density inversions separated from the seabed by some 200 m of relatively rapidly moving dense water, thus revealing the previously unknown structure of an internal hydraulic jump in the deep ocean. Predictions in the Red Sea Outflow in the Gulf of Aden are relatively uncertain. Available data, and the model predictions, do not provide strong support for the existence of hydraulic jumps. In the Mediterranean Outflow, however, both model and data indicate the presence of a hydraulic jump.


Author(s):  
Callum J. Shakespeare ◽  
Brian K. Arbic ◽  
Andrew McC. Hogg

AbstractInternal waves generated at the seafloor propagate through the interior of the ocean, driving mixing where they break and dissipate. However, existing theories only describe these waves in two limiting cases. In one limit, the presence of an upper boundary permits bottom-generated waves to reflect from the ocean surface back to the seafloor, and all the energy flux is at discrete wavenumbers corresponding to resonant modes. In the other limit, waves are strongly dissipated such that they do not interact with the upper boundary and the energy flux is continuous over wavenumber. Here, a novel linear theory is developed for internal tides and lee waves that spans the parameter space in between these two limits. The linear theory is compared with a set of numerical simulations of internal tide and lee wave generation at realistic abyssal hill topography. The linear theory is able to replicate the spatially-averaged kinetic energy and dissipation of even highly non-linear wave fields in the numerical simulations via an appropriate choice of the linear dissipation operator, which represents turbulent wave breaking processes.


2017 ◽  
Vol 829 ◽  
pp. 280-303 ◽  
Author(s):  
S. Haney ◽  
W. R. Young

Groups of surface gravity waves induce horizontally varying Stokes drift that drives convergence of water ahead of the group and divergence behind. The mass flux divergence associated with spatially variable Stokes drift pumps water downwards in front of the group and upwards in the rear. This ‘Stokes pumping’ creates a deep Eulerian return flow that sets the isopycnals below the wave group in motion and generates a trailing wake of internal gravity waves. We compute the energy flux from surface to internal waves by finding solutions of the wave-averaged Boussinesq equations in two and three dimensions forced by Stokes pumping at the surface. The two-dimensional (2-D) case is distinct from the 3-D case in that the stratification must be very strong, or the surface waves very slow for any internal wave (IW) radiation at all. On the other hand, in three dimensions, IW radiation always occurs, but with a larger energy flux as the stratification and surface wave (SW) amplitude increase or as the SW period is shorter. Specifically, the energy flux from SWs to IWs varies as the fourth power of the SW amplitude and of the buoyancy frequency, and is inversely proportional to the fifth power of the SW period. Using parameters typical of short period swell (e.g. 8 s SW period with 1 m amplitude) we find that the energy flux is small compared to both the total energy in a typical SW group and compared to the total IW energy. Therefore this coupling between SWs and IWs is not a significant sink of energy for the SWs nor a source for IWs. In an extreme case (e.g. 4 m amplitude 20 s period SWs) this coupling is a significant source of energy for IWs with frequency close to the buoyancy frequency.


2010 ◽  
Vol 17 (4) ◽  
pp. 345-360 ◽  
Author(s):  
E. L. Shroyer ◽  
J. N. Moum ◽  
J. D. Nash

Abstract. The energetics of large amplitude, high-frequency nonlinear internal waves (NLIWs) observed over the New Jersey continental shelf are summarized from ship and mooring data acquired in August 2006. NLIW energy was typically on the order of 105 Jm−1, and the wave dissipative loss was near 50 W m−1. However, wave energies (dissipations) were ~10 (~2) times greater than these values during a particular week-long period. In general, the leading waves in a packet grew in energy across the outer shelf, reached peak values near 40 km inshore of the shelf break, and then lost energy to turbulent mixing. Wave growth was attributed to the bore-like nature of the internal tide, as wave groups that exhibited larger long-term (lasting for a few hours) displacements of the pycnocline offshore typically had greater energy inshore. For ship-observed NLIWs, the average dissipative loss over the region of decay scaled with the peak energy in waves; extending this scaling to mooring data produces estimates of NLIW dissipative loss consistent with those made using the flux divergence of wave energy. The decay time scale of the NLIWs was approximately 12 h corresponding to a length scale of 35 km (O(100) wavelengths). Imposed on these larger scale energetic trends, were short, rapid exchanges associated with wave interactions and shoaling on a localized topographic rise. Both of these events resulted in the onset of shear instabilities and large energy loss to turbulent mixing.


2018 ◽  
Vol 40 ◽  
pp. 05067 ◽  
Author(s):  
Vimaldoss Jesudhas ◽  
Frédéric Murzyn ◽  
Ram Balachandar

This paper presents the results of three-dimensional, unsteady, Improved Delayed Detached Eddy Simulations of an oscillating and a stable hydraulic jump at Froude numbers of 3.8 and 8.5, respectively. The different types of oscillations characterised in a hydraulic jump are analysed by evaluating the instantaneous flow field. The instability caused by the flapping wall-jet type flow in an oscillating jump is distinct compared to the jump-toe fluctuations caused by the spanwise vortices in the shear layer of a stable jump. These flow features are accurately captured by the simulations and are presented with pertinent discussions. The near-bed vortical structures in an oscillating jump is extracted and analysed using the λ2 criterion.


Author(s):  
Adam Kozioł ◽  
Janusz Urbański ◽  
Adam Kiczko ◽  
Marcin Krukowski ◽  
Piotr Siwicki

Abstract Turbulent intensity and scales of turbulence after hydraulic jump in rectangular channel. Experimental research was undertaken to investigate the changes in spatial turbulence intensity and scales of turbulent eddies (macroeddies) in a rectangular channel and the influence of the hydraulic jump on vertical, lateral and streamwise distributions of relative turbulence intensity and scales of turbulent eddies. The results of three tests for different discharges are presented. An intensive turbulent mixing that arises as a result of a hydraulic jump has a significant effect on instantaneous velocity, turbulent intensities and sizes of eddies, as well as their vertical and longitudinal distributions. In the analysed case the most noticeable changes appeared up to 0.5 m downstream the hydraulic jump. In the vertical dimension such an effect was especially seen near the surface. The smallest streamwise sizes of macroeddies were present near the surface, maximum at the depth of z/h = 0.6 and from that point sizes were decreasing towards the bottom. The intensive turbulent mixing within the hydraulic jump generates macroeddies of small sizes.


2006 ◽  
Vol 33 (3) ◽  
Author(s):  
Ming-Huei Chang ◽  
Ren-Chieh Lien ◽  
Tswen Yung Tang ◽  
Eric A. D'Asaro ◽  
Yiing Jang Yang

Sign in / Sign up

Export Citation Format

Share Document