On a circular cylinder in a steady wind at transition Reynolds numbers

1960 ◽  
Vol 9 (4) ◽  
pp. 603-612 ◽  
Author(s):  
John S. Humphreys

Some results of an experimental investigation of forces associated with the subsonic flow of air around a circular cylinder in a wind tunnel are presented. The oscillating forces due to the downstream vortex street are studied for Reynolds numbers in the ‘critical’ range 4 × 104 to 6 × 105. Of particular interest is the observation, at the onset of transition to turbulence, of a spanwise wave or cell pattern near the cylinder surface, which is stabilized in a striking manner by the use of the fine threads as a visualization technique.

1961 ◽  
Vol 11 (2) ◽  
pp. 244-256 ◽  
Author(s):  
J. H. Gerrard

The oscillating lift and drag on circular cylinders are determined from measurements of the fluctuating pressure on the cylinder surface in the range of Reynolds number from 4 × 103 to just above 105.The magnitude of the r.m.s. lift coefficient has a maximum of about 0.8 at a Reynolds number of 7 × 104 and falls to about 0.01 at a Reynolds number of 4 × 103. The fluctuating component of the drag was determined for Reynolds numbers greater than 2 × 104 and was found to be an order of magnitude smaller than the lift.


2011 ◽  
Vol 133 (8) ◽  
Author(s):  
Michael Bishop ◽  
Serhiy Yarusevych

The effect of wall streamlining on flow development over a circular cylinder was investigated experimentally in an adaptive-wall wind tunnel. Experiments were carried out for a Reynolds number of 57,000 and three blockage ratios of 5%, 8%, and 17%. Three test section wall configurations were investigated, namely, geometrically straight walls (GSW), aerodynamically straight walls (ASW), and streamlined walls (SLW). The results show that solid blockage effects are evident in cylinder surface pressure distributions for the GSW and ASW configurations, manifested by an increased peak suction and base suction. Upon streamlining the walls, pressure distributions for each blockage ratio investigated closely match distributions expected for low blockage ratios. Wake blockage limits wake growth in the GSW configuration at 7.75 and 15 diameters downstream of the cylinder for blockages of 17% and 8%, respectively. This adverse effect can be rectified by streamlining the walls, with the resulting wake width development matching that expected for low blockage ratios. Wake vortex shedding frequency and shear layer instability frequency increase in the GSW and ASW configurations with increasing blockage ratio. The observed invariance of the near wake width with wall configuration suggests that the frequency increase is caused by the increased velocity due to solid blockage effects. For all the blockage ratios investigated, this increase is rectified in the SLW configuration, with the resulting Strouhal numbers of about 0.19 matching that expected for low blockage ratios at the corresponding Reynolds number. Blockage effects on the shear layer instability frequency are also successfully mitigated by streamlining the walls.


2016 ◽  
Vol 790 ◽  
pp. 453-491 ◽  
Author(s):  
Aswin Gnanaskandan ◽  
Krishnan Mahesh

A homogeneous mixture model is used to study cavitation over a circular cylinder at two different Reynolds numbers ($Re=200$ and 3900) and four different cavitation numbers (${\it\sigma}=2.0$, 1.0, 0.7 and 0.5). It is observed that the simulated cases fall into two different cavitation regimes: cyclic and transitional. Cavitation is seen to significantly influence the evolution of pressure, boundary layer and loads on the cylinder surface. The cavitated shear layer rolls up into vortices, which are then shed from the cylinder, similar to a single-phase flow. However, the Strouhal number corresponding to vortex shedding decreases as the flow cavitates, and vorticity dilatation is found to play an important role in this reduction. At lower cavitation numbers, the entire vapour cavity detaches from the cylinder, leaving the wake cavitation-free for a small period of time. This low-frequency cavity detachment is found to occur due to a propagating condensation front and is discussed in detail. The effect of initial void fraction is assessed. The speed of sound in the free stream is altered as a result and the associated changes in the wake characteristics are discussed in detail. Finally, a large-eddy simulation of cavitating flow at $Re=3900$ and ${\it\sigma}=1.0$ is studied and a higher mean cavity length is obtained when compared to the cavitating flow at $Re=200$ and ${\it\sigma}=1.0$. The wake characteristics are compared to the single-phase results at the same Reynolds number and it is observed that cavitation suppresses turbulence in the near wake and delays three-dimensional breakdown of the vortices.


Author(s):  
Chuan He ◽  
Tianyu Long ◽  
Mingdao Xin ◽  
Benjamin T. F. Chung

An experimental investigation for the incompressible flow past a smooth circular cylinder at the sub-critical region is presented in detail. A smooth circular cylinder is placed in a wind tunnel and the local pressure distribution on the cylinder surface is measured subtly. The Reynolds Number ranges from 104 to 8 × 104. The experimental data show that there exists a nadir point of the surface pressure in the front the across section of the cylinder and the pressure nadir position varies with the Reynolds number. It is found that this point tends to move forward of the cylinder as Reynolds number increases. Based on the present experimental findings, a simple algebraic expression describing the relationship between the location of the pressure’s nadir and Reynolds number is proposed.


Author(s):  
Michael Bishop ◽  
Serhiy Yarusevych

The effect of wall streamlining on flow development over a circular cylinder was investigated experimentally in an adaptive-wall wind tunnel. Experiments were carried out for a Reynolds number of 57,000 and three blockage ratios of 5%, 8%, and 17%. Three test section wall configurations were investigated, namely, geometrically straight walls (GSW), aerodynamically straight walls (ASW), and streamlined walls (SLW). The results show that solid blockage effects are clearly evident in cylinder surface pressure distributions for the GSW and ASW configurations, manifested by an increased peak suction and base suction. Upon streamlining the walls, pressure distributions for each blockage ratio investigated closely match distributions expected for low blockage ratios. Wake blockage limits wake growth in the GSW configuration at 7.75 and 15 diameters downstream of the cylinder for blockages of 17% and 8%, respectively. This adverse effect can be rectified by streamlining the walls, with the resulting wake width development matching that expected for low blockage ratios. Wake vortex shedding frequency and shear layer instability frequency increase in the GSW and ASW configurations with increasing blockage ratio. The observed invariance of the near wake width with wall configuration suggests that the frequency increase is caused by the increased velocity due to solid blockage effects. For all the blockage ratios investigated, this increase is rectified in the SLW configuration, with the resulting Strouhal numbers of about 0.19 matching that expected for low blockage ratios at the corresponding Reynolds number. Blockage effects on the shear layer instability frequency are also successfully mitigated by streamlining the walls.


2021 ◽  
Author(s):  
Mohamed Youssef ◽  
Simon T\xf6dter ◽  
Jens Neugebauer ◽  
Bettar El Moctar ◽  
Thomas E. Schellin

1980 ◽  
Vol 101 (3) ◽  
pp. 583-607 ◽  
Author(s):  
Roger Bouard ◽  
Madeleine Coutanceau

The time development of the symmetrical standing zone of recirculation, which is formed in the early stage of the flow due to a circular cylinder impulsively set in motion perpendicular to its generators, has been studied using a flow visualization technique. The Reynolds numbers (based upon the diameter) range from 40 to 104. Some new phenomena indicated in the flow patterns are revealed, and several different regimes are differentiated by a detailed analysis of the evolution of the main flow characteristics. A correlation with some theoretical results is established.


1972 ◽  
Vol 94 (4) ◽  
pp. 771-776 ◽  
Author(s):  
R. A. Smith ◽  
Woo Taik Moon ◽  
T. W. Kao

Experiments were performed to evaluate the influence of yaw angle on circular cylinder pressure drag and near wake characteristics in the range of Reynolds numbers 2000 to 10,000. It was found that the transition in the wake from laminar to turbulent motion was significantly promoted as the angle of yaw increased. As a result, wake properties such as base pressure and position of transition to turbulence do not obey the Independence Principle which requires that properties be dependent only on the normal component of the free-stream conditions.


1977 ◽  
Vol 79 (2) ◽  
pp. 257-272 ◽  
Author(s):  
Madeleine Coutanceau ◽  
Roger Bouard

The plane flow induced by the impulsive start of a circular cylinder previously at rest in a still fluid is investigated experimentally by a visualization technique. The details of the flow field at the different stages of its establishment are pointed out, and the effect of the wall upon the evolution of the flow in time is examined. Photographs of the flow patterns are presented. This study corresponds to that range of Reynolds numbers for which a closed wake exists and adheres stably to the cylinder.


1970 ◽  
Vol 42 (3) ◽  
pp. 471-489 ◽  
Author(s):  
S. C. R. Dennis ◽  
Gau-Zu Chang

Finite-difference solutions of the equations of motion for steady incompressible flow around a circular cylinder have been obtained for a range of Reynolds numbers from R = 5 to R = 100. The object is to extend the Reynolds number range for reliable data on the steady flow, particularly with regard to the growth of the wake. The wake length is found to increase approximately linearly with R over the whole range from the value, just below R = 7, at which it first appears. Calculated values of the drag coefficient, the angle of separation, and the pressure and vorticity distributions over the cylinder surface are presented. The development of these properties with Reynolds number is consistent, but it does not seem possible to predict with any certainty their tendency as R → ∞. The first attempt to obtain the present results was made by integrating the time-dependent equations, but the approach to steady flow was so slow at higher Reynolds numbers that the method was abandoned.


Sign in / Sign up

Export Citation Format

Share Document