The theory of induced voltage electromagnetic flowmeters

1970 ◽  
Vol 43 (3) ◽  
pp. 577-590 ◽  
Author(s):  
M. K. Bevir

The performance of an electromagnetic flowmeter head is assessed in terms of a weight vector W such that the output voltage ∝ ∫ v. Wdτ, where v is the velocity and τ the flowmeter volume. The condition curl W = 0 with W → 0 at ∞ is shown to be necessary and sufficient for the velocity to depend only on the flow rate and not on the flow pattern. A class of such ‘ideal’ meters is described. It is shown that meters with point electrodes can never be ideal but may, with considerable complication of the magnetic field, be made immune to asymmetric velocity-profile variations if the flow is rectilinear.

2021 ◽  
Vol 11 (10) ◽  
pp. 4567
Author(s):  
Xiaoqing Zhang ◽  
Yaowu Wang

An effective method is proposed in this paper for calculating the transient magnetic field and induced voltage in the photovoltaic bracket system under lightning stroke. Considering the need for the lightning current responses on various branches of the photovoltaic bracket system, a brief outline is given to the equivalent circuit model of the photovoltaic bracket system. The analytic formulas of the transient magnetic field are derived from the vector potential for the tilted, vertical and horizontal branches in the photovoltaic bracket system. With a time–space discretization scheme put forward for theses formulas, the magnetic field distribution in an assigned spatial domain is determined on the basis of the lightning current responses. The magnetic linkage passing through a conductor loop is evaluated by the surface integral of the magnetic flux density and the induced voltage is obtained from the time derivative of the magnetic linkage. In order to check the validity of the proposed method, an experiment is made on a reduced-scale photovoltaic bracket system. Then, the proposed method is applied to an actual photovoltaic bracket system. The calculations are performed for the magnetic field distributions and induced voltages under positive and negative lightning strokes.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1642
Author(s):  
Tomasz Kamizela ◽  
Mariusz Kowalczyk ◽  
Iwona Zawieja

This study verified the possibility of sludge conditioning before dewatering using a combination of factors such as iron coagulant, polyelectrolyte, and the magnetic field generated by a solenoid. It was assumed that further conditioning with the magnetic field, leads to the formation of a rigid structure of sludge flocs by the destabilized and flocculated solid phase particles in the sludge (using the conditioning dual chemical method: PIX—polyelectrolyte). The resulting structure can increase the efficiency of sludge cake filtration by reducing sludge compressibility and maintaining the porosity necessary for the flow of removed water through the filter cake. The effects of the exposure of conditioned sludge (after the dual chemical method) to the magnetic field depended on two factors. The first factor was the direction of sludge flow through the magnetic field. This was a key factor in improving the efficiency of sludge conditioning using this method. The sludge flow through the solenoid in the direction opposite to the magnetic field had a strong effect on the particles. The second factor was the rate of sludge flow through the magnetic field. Better results were obtained for a flow rate of 1.0 L/min than for pumping sludge through a coil at a rate of 2.0 L/min. At a flow rate of 1.0 L/min, the exposure time of the sludge to the magnetic field was 6.6 s. Too high a flow rate may lead to the deterioration of filtration efficiency by adverse changes in the structure of sludge flocs. This may be due to the mechanical destruction of the flocs structure of sludge by a too turbulent flow.


1970 ◽  
Vol 4 (2) ◽  
pp. 297-300 ◽  
Author(s):  
S. W. H. Cowley

The problem considered here is that of growing longitudinal waves which propagate in a hot plasma parallel to any magnetic field which may be present (i.e. the magnetic field is neglected in the Vlasov equation). The necessary and sufficient condition for stability was obtained by Penrose (1960) and growth rates for plasmas obeying a Maxwell zero-order velocity distribution were computed by Fried & Conte (1961).


1971 ◽  
Vol 11 (03) ◽  
pp. 223-228 ◽  
Author(s):  
C.I. Pierce ◽  
L.C. Headley ◽  
W.K. Sawyer

Abstract Simplified models, consisting of single, circular channels and channels of different length and diameter in series and parallel combinations, are used in conjunction with the equations of Poiseuille and Hartmann to demonstrate the dependence of the rate of flow of mercury in the models on channel dimensions when the models are subjected to transverse magnetic fields. Experimental tests conducted on mercury-saturated, glass-bead packs and a natural rock sample show that a magnetic field applied transversely to the direction of flow retards flow rate. The magnitude of the magnetic effect increased with increasing bead size and field intensity. Results of this work suggest that magnetic fields have potential in the study of the internal geometry of flow channels in porous media. Introduction The purpose of this work is to determine qualitatively by theoretical and experimental considerations whether or not a magnetic method has potential in the study of the basic properties of rock. The nature of the solid surface and the geometry of the pore network in petroleum-bearing rock plays an important role in the flow behavior of fluids in a petroleum reservoir. Hence, any technique of study that would provide new and additional information on the rock matrix would contribute to a better understanding of petroleum reservoir performance. One such technique appearing to offer performance. One such technique appearing to offer promise is in the area of magnetohydrodynamics. promise is in the area of magnetohydrodynamics. While much research, both theoretical and experimental, has been devoted to the problems concerned with the flow of conducting fluids in transverse magnetic fields in single channels, very little information has been published regarding the behavior of conducting liquids in porous media under the influence of a transverse magnetic field. Perhaps this dearth of information can be attributed Perhaps this dearth of information can be attributed to two main causes:the pores and pore connections are generally so small that intense magnetic fields are required to produce Hartmann numbers of sufficient magnitude to exert appreciable influence on flow rate, andthe extreme complexity of the channel systems in porous media render them intractable to theoretical analysis unless numerous assumptions are made to simplify network geometry. When a conducting fluid moves in a channel in a transverse magnetic field, a force is exerted on the fluid which retards its flow. The magnitude of flow-rate retardation increases with increasing field intensity, channel dimensions and channel-wall conductivity. These magnetohydrodynamic phenomena and theory have been described and developed by various investigators. Since a petroleum reservoir rock is an interconnected network of pores and channels within a rock framework, one would anticipate that the geometry of the network would exert some influence on the magnitude of the effect of a transverse magnetic field on the rate of flow of a conducting fluid therein. The purpose of this work is to demonstrate through the use of simple models and experimental data that the magnetic field effect on flow rate has potential for use in determining size and size potential for use in determining size and size distribution of pores in porous materials. THEORY Electromagnetic induction in liquids is not completely defined, and the complexities involved in many cases appear to defy true analytical expression. However, by applying some simplifying assumptions, these cases may be made tractable to solution to provide qualitative indication of system behavior. The following analysis was conducted in conjunction with laboratory tests to determine if magnet ohydrodynamics has possible potential as a tool for studying the internal geometry of porous systems. When a conducting liquid moves in a channel in a transverse magnetic field, an emf is developed in the channel normal to both the channel axis and the magnetic field. This emf causes circulating currents to flow in the liquid as shown in Fig. 1. SPEJ P. 223


1975 ◽  
Vol 53 (23) ◽  
pp. 2613-2616 ◽  
Author(s):  
O. P. Chandna ◽  
H. Toews ◽  
V. I. Nath

Plane steady state viscous fluid flows, in which the magnetic field and velocity field are constantly inclined to one another, are considered. Necessary and sufficient physical conditions have been derived for flows with zero current density and the general solutions for these flows are obtained. Irrotational flows and flows with straight streamlines are also studied.


2008 ◽  
Vol 583 ◽  
pp. 1-20 ◽  
Author(s):  
Volodymyr A. Chernenko ◽  
Victor A. L'vov

The giant magnetically-induced deformation of ferromagnetic shape memory alloys results from the magnetic field-induced rearrangement of twinned martensite under the magnetic field. This deformation is conventionally referred to as the magnetic-field-induced-strain (MFIS). The MFIS is comparable in value with the spontaneous deformation of crystal lattice during the martensitic transformation of an alloy. Although the first observations of MFIS were reported more than 30 years ago, it has got a world-wide interest 20 years later after the creation of the Ni–Mn–Ga alloy system with its practically important room-temperature martensitic structure and experimental evidence of the large magnetostriction. The underlying physics as well as necessary and sufficient conditions for the observation of MFIS are the main focus of this chapter. A magnetostrictive mechanism of the unusual magnetic and magnetomechanical effects observed in Ni–Mn–Ga alloys is substantiated and a framework of consistent theory of these effects is outlined starting from the fundamental conception of magnetoelasticity and the commonly known principles of ferromagnetism and linear elasticity theories. A reasonable agreement between the theoretical deductions and available experimental data is demonstrated and, in this way, a key role of magnetoelastic coupling in the magnetomechanical behavior of Ni–Mn–Ga alloys is proved. A correspondence of magnetostrictive mechanism to the crystallographic features of MFIS and the basic relationships of the thermodynamics of solids are discussed.


Author(s):  
Yuki Oshikawa ◽  
Takashi Innami ◽  
Tatsuo Sawada

Since UVP is the method to take the velocity information by using ultrasound, this method is very suitable for measuring the velocity profile of opaque fluid. Oscillating pipe flow of a magnetic fluid was investigated experimentally to examine the applicability of this method to magnetic fluid flow. We used a diluted water-base magnetic fluid and the magnetic field was applied by two permanent magnets. Influence of an applied magnetic field on flow behaviors were discussed. The amplitude and phase of the oscillating velocity varied with intensity of the magnetic field, which yielded increase of the apparent viscosity.


Sign in / Sign up

Export Citation Format

Share Document