The effect of mainflow transverse velocities in linear stability theory

1971 ◽  
Vol 50 (4) ◽  
pp. 741-750 ◽  
Author(s):  
T. S. Chen ◽  
E. M. Sparrow ◽  
F. K. Tsou

In studying the stability of the boundary layer with surface mass injection, a generalized version of the Orr–Sommerfeld equation was derived which takes account of the transverse velocity component in the mainflow. The new terms in the generalized Orr–Sommerfeld equation are inversely proportional to the Reynolds number. The resulting eigenvalue problem was solved numerically for a wide range of values of the mass injection intensity. It was found that the critical Reynolds number (based on the distance from the leading edge) decreases with increasing mass injection. The deviations between the critical Reynolds numbers from the generalized and conventional Orr–Sommerfeld equations have a different sign at low injection intensities from that at high injection intensities.

1968 ◽  
Vol 90 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Ahmed R. Wazzan ◽  
T. Okamura ◽  
A. M. O. Smith

The theory of two-dimensional instability of laminar flow of water over solid surfaces is extended to include the effects of heat transfer. The equation that governs the stability of these flows to Tollmien-Schlichting disturbances is the Orr-Sommerfeld equation “modified” to include the effect of viscosity variation with temperature. Numerical solutions to this equation at high Reynolds numbers are obtained using a new method of integration. The method makes use of the Gram-Schmidt orthogonalization technique to obtain linearly independent solutions upon numerically integrating the “modified Orr-Sommerfeld” equation using single precision arithmetic. The method leads to satisfactory answers for Reynolds numbers as high as Rδ* = 100,000. The analysis is applied to the case of flow over both heated and cooled flat plates. The results indicate that heating and cooling of the wall have a large influence on the stability of boundary-layer flow in water. At a free-stream temperature of 60 deg F and wall temperatures of 60, 90, 120, 135, 150, 200, and 300deg F, the critical Reynolds numbers Rδ* are 520, 7200, 15200, 15600, 14800, 10250, and 4600, respectively. At a free-stream temperature of 200F and wall temperature of 60 deg F (cooled case), the critical Reynolds number is 151. Therefore, it is evident that a heated wall has a stabilizing effect, whereas a cooled wall has a destabilizing effect. These stability calculations show that heating increases the critical Reynolds number to a maximum value (Rδ* max = 15,700 at a temperature of TW = 130 deg F) but that further heating decreases the critical Reynolds number. In order to determine the influence of the viscosity derivatives upon the results, the critical Reynolds number for the heated case of T∞ = 40 and TW = 130 deg F was determined using (a) the Orr-Sommerfeld equation and (b) the present governing equation. The resulting critical Reynolds numbers are Rδ* = 140,000 and 16,200, respectively. Therefore, it is concluded that the terms pertaining to the first and second derivatives of the viscosity have a considerable destabilizing influence.


2019 ◽  
Vol 14 (1) ◽  
pp. 52-58 ◽  
Author(s):  
A.D. Nizamova ◽  
V.N. Kireev ◽  
S.F. Urmancheev

The flow of a viscous model fluid in a flat channel with a non-uniform temperature field is considered. The problem of the stability of a thermoviscous fluid is solved on the basis of the derived generalized Orr-Sommerfeld equation by the spectral decomposition method in Chebyshev polynomials. The effect of taking into account the linear and exponential dependences of the fluid viscosity on temperature on the spectral characteristics of the hydrodynamic stability equation for an incompressible fluid in a flat channel with given different wall temperatures is investigated. Analytically obtained profiles of the flow rate of a thermovisible fluid. The spectral pictures of the eigenvalues of the generalized Orr-Sommerfeld equation are constructed. It is shown that the structure of the spectra largely depends on the properties of the liquid, which are determined by the viscosity functional dependence index. It has been established that for small values of the thermoviscosity parameter the spectrum compares the spectrum for isothermal fluid flow, however, as it increases, the number of eigenvalues and their density increase, that is, there are more points at which the problem has a nontrivial solution. The stability of the flow of a thermoviscous fluid depends on the presence of an eigenvalue with a positive imaginary part among the entire set of eigenvalues found with fixed Reynolds number and wavenumber parameters. It is shown that with a fixed Reynolds number and a wave number with an increase in the thermoviscosity parameter, the flow becomes unstable. The spectral characteristics determine the structure of the eigenfunctions and the critical parameters of the flow of a thermally viscous fluid. The eigenfunctions constructed in the subsequent works show the behavior of transverse-velocity perturbations, their possible growth or decay over time.


1976 ◽  
Vol 43 (2) ◽  
pp. 209-212 ◽  
Author(s):  
F. C. T. Shen ◽  
T. S. Chen ◽  
L. M. Huang

In studying the stability due to axisymmetric disturbances of the developing flow of an incompressible fluid in the entrance region of a circular tube, a generalized version of the Orr-Sommerfeld equation was derived which takes account of the radial velocity component in the main flow. The new terms in the generalized Orr-Sommerfeld equation are inversely proportional to the Reynolds number. The resulting eigenvalue problem consisting of the disturbance equation and the boundary conditions was solved by a direct numerical integration scheme along with an iteration procedure. Neutral stability curves and critical Reynolds numbers at various axial locations are presented. A comparison of the present results with those from the conventional Orr-Sommerfeld equation in which the effect of the main-flow radial velocity is neglected, shows that inclusion of the radial velocity contributes to a destabilization of the main flow.


1976 ◽  
Vol 77 (1) ◽  
pp. 81-104 ◽  
Author(s):  
D. Corner ◽  
D. J. R. Houston ◽  
M. A. S. Ross

Using the Orr-Sommerfeld equation with the wavenumber as the eigenvalue, a search for higher eigenstates in the stability theory of the Blasius boundary layer has revealed the existence of a number of viscous states in addition to the long established fundamental state. The viscous states are discrete, belong to two series, and are all heavily damped in space. Within the limits of the investigation the number of viscous states existing in the layer increases as the Reynolds number and the angular frequency of the perturbation increase. It is suggested that the viscous eigenstates may be responsible for the excitation of some boundary-layer disturbances by disturbances in the free stream.


1970 ◽  
Vol 92 (4) ◽  
pp. 628-634 ◽  
Author(s):  
J. C. Mollendorf ◽  
B. Gebhart

External natural convection transient response leading to transition and established turbulent flow is determined experimentally and compared with the laminar double-integral theory predictions for processes wherein all transient effects are important. The theory is shown to give very accurate predictions during the laminar portion of the transient, and temperature overshool is not observed experimentally. In addition, several unexpected and very interesting observations were made concerning the stability of the flow as it proceeds to turbulence. The first main observation is that the propagating leading edge effect serves as a very effective moving boundary layer trip and triggers the resulting turbulence. Also for the less extreme condition (less vigorous transient) there is a relaminarization of the boundary layer. Explanations of these observations are proposed in the light of recently acquired results of linear stability theory analysis for small disturbances.


1971 ◽  
Vol 50 (4) ◽  
pp. 689-703 ◽  
Author(s):  
Steven A. Orszag

The Orr-Sommerfeld equation is solved numerically using expansions in Chebyshev polynomials and the QR matrix eigenvalue algorithm. It is shown that results of great accuracy are obtained very economically. The method is applied to the stability of plane Poiseuille flow; it is found that the critical Reynolds number is 5772·22. It is explained why expansions in Chebyshev polynomials are better suited to the solution of hydrodynamic stability problems than expansions in other, seemingly more relevant, sets of orthogonal functions.


1974 ◽  
Vol 62 (4) ◽  
pp. 753-773 ◽  
Author(s):  
Christian Von Kerczek ◽  
Stephen H. Davis

The stability of the oscillatory Stokes layers is examined using two quasi-static linear theories and an integration of the full time-dependent linearized disturbance equations. The full theory predicts absolute stability within the investigated range and perhaps for all the Reynolds numbers. A given wavenumber disturbance of a Stokes layer is found to bemore stablethan that of the motionless state (zero Reynolds number). The quasi-static theories predict strong inflexional instabilities. The failure of the quasi-static theories is discussed.


2011 ◽  
Vol 678 ◽  
pp. 589-599 ◽  
Author(s):  
CHRISTOPH J. MACK ◽  
PETER J. SCHMID

The onset of transition in the leading-edge region of a swept blunt body depends crucially on the stability characteristics of the flow. Modelling this flow configuration by swept compressible flow around a parabolic body, a global approach is taken to extract pertinent stability information via a DNS-based iterative eigenvalue solver. Global modes combining features from boundary-layer and acoustic instabilities are presented. A parameter study, varying the spanwise disturbance wavenumber and the sweep Reynolds number, showed the existence of unstable boundary-layer and acoustic modes. The corresponding neutral curve displays two overlapping regions of exponential growth and two critical Reynolds numbers, one for boundary-layer instabilities and one for acoustic instabilities. The employed global approach establishes a first neutral curve, delineating stable from unstable parameter configurations, for the complex flow about a swept parabolic body with corresponding implications for swept leading-edge flow.


Author(s):  
Kuchimanchi K Bharadwaj ◽  
Debopam Das

Abstract The present study investigates the influence of an annular coflowing air stream on the puffing behaviour of a buoyant plume by employing the BiGlobal Linear Stability Analysis. An increase in the coflow is found to mitigate the puffing intensity and eventually stabilize the plumes. From the stability analysis, the critical coflow ratios, which represent the amount of coflow required to completely suppress the puffing, have been estimated for plumes spanning a wide range of non-dimensional parameters. The analysis shows that the critical coflow ratio largely depends on the two buoyancy parameters, the Froude number, and the density ratio whereas it remains marginally affected by the plume Reynolds number. Plumes with higher buoyancy require larger coflow for suppressing puffing. From the instability analysis, we have obtained a correlation law for critical coflow ratios in buoyant plumes. Also, it is found that the plume puffing frequency increases with an increase in the coflow. We attempt to ascertain the reasons for instability mitigation and frequency increase in the puffing plumes because of coflow.


1998 ◽  
Vol 377 ◽  
pp. 267-312 ◽  
Author(s):  
A. A. DRAAD ◽  
G. D. C. KUIKEN ◽  
F. T. M. NIEUWSTADT

A cylindrical pipe facility with a length of 32 m and a diameter of 40 mm has been designed. The natural transition Reynolds number, i.e. the Reynolds number at which transition occurs as a result of non-forced, natural disturbances, is approximately 60 000. In this facility we have studied the stability of cylindrical pipe flow to imposed disturbances. The disturbance consists of periodic suction and injection of fluid from a slit over the whole circumference in the pipe wall. The injection and suction are equal in magnitude and each distributed over half the circumference so that the disturbance is divergence free. The amplitude and frequency can be varied over a wide range.First, we consider a Newtonian fluid, water in our case. From the observations we compute the critical disturbance velocity, which is the smallest disturbance at a given Reynolds number for which transition occurs. For large wavenumbers, i.e. large frequencies, the dimensionless critical disturbance velocity scales according to Re−1, while for small wavenumbers, i.e. small frequencies, it scales as Re−2/3. The latter is in agreement with weak nonlinear stability theory. For Reynolds numbers above 30 000 multiple transition points are found which means that increasing the disturbance velocity at constant dimensionless wavenumber leads to the following course of events. First, the flow changes from laminar to turbulent at the critical disturbance velocity; subsequently at a higher value of the disturbance it returns back to laminar and at still larger disturbance velocities the flow again becomes turbulent.Secondly, we have carried out stability measurements for (non-Newtonian) dilute polymer solutions. The results show that the polymers reduce in general the natural transition Reynolds number. The cause of this reduction remains unclear, but a possible explanation may be related to a destabilizing effect of the elasticity on the developing boundary layers in the entry region of the flow. At the same time the polymers have a stabilizing effect with respect to the forced disturbances, namely the critical disturbance velocity for the polymer solutions is larger than for water. The stabilization is stronger for fresh polymer solutions and it is also larger when the polymers adopt a more extended conformation. A delay in transition has been only found for extended fresh polymers where delay means an increase of the critical Reynolds number, i.e. the number below which the flow remains laminar at any imposed disturbance.


Sign in / Sign up

Export Citation Format

Share Document