Experiments on the flow past spheres at very high Reynolds numbers

1972 ◽  
Vol 54 (3) ◽  
pp. 565-575 ◽  
Author(s):  
Elmar Achenbach

The present work is concerned with the flow past spheres in the Reynolds number range 5 × 104 [les ] Re [les ] 6 × 106. Results are reported for the case of a smooth surface. The total drag, the local static pressure and the local skin friction distribution were measured at a turbulence level of about 0·45%. The present results are compared with other available data as far as possible. Information is obtained from the local flow parameters on the positions of boundary-layer transition from laminar to turbulent flow and of boundary-layer separation. Finally the dependence of friction forces on Reynolds number is pointed out.

1966 ◽  
Vol 24 (1) ◽  
pp. 1-31 ◽  
Author(s):  
H. T. Nagamatsu ◽  
B. C. Graber ◽  
R. E. Sheer

An investigation was conducted in a hypersonic shock tunnel to study the laminar boundary-layer transition on a highly cooled 10° cone of 4 ft. length over the Mach-number range of 8·5 to 10·5 with a stagnation temperature of 1400 °K. The effects on transition of tip surface roughness, tip bluntness, and ± 2° angle of attack were investigated. With fast-response, thin film surface heat-transfer gauges, it was possible to detect the passage of turbulent bursts which appeared at the beginning of transition. Pitot-tube surveys and schlieren photographs of the boundary layer were obtained to verify the interpretation of the heat-transfer data. It was found that the surface roughness greatly promoted transition in the proper Reynolds-number range. The Reynolds numbers for the beginning and end of transition at the 8·5 Mach-number location were 3·8 × 106−9·6 × 106and 2·2 × 106−4·2 × 106for the smooth sharp tip and rough sharp tip respectively. The local skin-friction data, determined from the Pitot-tube survey, agreed with the heat-transfer data obtained through the modified Reynolds analogy. The tip-bluntness data showed a strong delay in the beginning of transition for a cone base-to-tip diameter ratio of 20, approximately a 35% increase in Reynolds number over that of the smooth sharp-tip case. The angle-of-attack data indicated the cross flow to have a strong influence on transition by promoting it on the sheltered side of the cone and delaying it on the windward side.


2018 ◽  
Vol 848 ◽  
pp. 1157-1178 ◽  
Author(s):  
Ben L. Clapperton ◽  
Peter W. Bearman

A wind tunnel study has been carried out to investigate flow control around a hollow circular cylinder using passive jets driven by naturally occurring pressure differences. Flow enters the cylinder through spanwise holes along the stagnation line and exits through a spanwise distribution of holes at $\pm 65^{\circ }$. The diameter of the entry and exit holes were 1 % and 0.5 % of the cylinder diameter, respectively. Reynolds numbers were at the upper end of the subcritical regime and ranged from $3\times 10^{4}$ to $2.8\times 10^{5}$. Jet spacings of 10 % and 20 % of the cylinder diameter were investigated, and the ratio of the average jet exit velocity to the cross-flow velocity at the boundary layer edge was found to rise to approximately 0.35 and 0.4, respectively, above a Reynolds number of $1.5\times 10^{5}$. Findings based on using the surface oil flow technique revealed a repeating, organised cellular pattern downstream of adjacent jet exit holes consisting of a primary counter-rotating vortex pair structure, followed by a secondary weaker pair. Downstream of adjacent exit holes, and centred midway between them, there exists a separation bubble which delays final flow separation compared with the flow directly downstream of a jet. The variation in the angular position of boundary layer separation across the span had the effect of suppressing von Kármán vortex shedding. This resulted in a drag coefficient, at the upper end of the Reynolds-number range studied, 14.5 % lower than that found using trip wires to initiate boundary layer transition.


Author(s):  
Richard D. Sandberg ◽  
Richard Pichler ◽  
Liwei Chen ◽  
Roderick Johnstone ◽  
Vittorio Michelassi

Modern low pressure turbines (LPT) feature high pressure ratios and moderate Mach and Reynolds numbers, increasing the possibility of laminar boundary-layer separation on the blades. Upstream disturbances including background turbulence and incoming wakes have a profound effect on the behavior of separation bubbles and the type/location of laminar-turbulent transition and therefore need to be considered in LPT design. URANS are often found inadequate to resolve the complex wake dynamics and impact of these environmental parameters on the boundary layers and may not drive the design to the best aerodynamic efficiency. LES can partly improve the accuracy, but has difficulties in predicting boundary layer transition and capturing the delay of laminar separation with varying inlet turbulence levels. Direct Numerical Simulation (DNS) is able to overcome these limitations but has to date been considered too computationally expensive. Here a novel compressible DNS code is presented and validated, promising to make DNS practical for LPT studies. Also, the sensitivity of wake loss coefficient with respect to freestream turbulence levels below 1% is discussed.


Author(s):  
Chenglong Wang ◽  
Lei Wang ◽  
Bengt Sundén ◽  
Valery Chernoray ◽  
Hans Abrahamsson

In the present study, the heat transfer characteristics on the suction and pressure sides of an outlet guide vane (OGV) are investigated by using liquid crystal thermography (LCT) method in a linear cascade. Because the OGV has a complex curved surface, it is necessary to calibrate the LCT by taking into account the effect of viewing angles of the camera. Based on the calibration results, heat transfer measurements of the OGV were conducted. Both on- and off-design conditions were tested, where the incidence angles of the OGV were 25 degrees and −25 degrees, respectively. The Reynolds numbers, based on the axial flow velocity and the chord length, were 300,000 and 450,000. In addition, heat transfer on suction side of the OGV with +40 degrees incidence angle was measured. The results indicate that the Reynolds number and incidence angle have considerable influences upon the heat transfer on both pressure and suction surfaces. For on-design conditions, laminar-turbulent boundary layer transitions are on both sides, but no flow separation occurs; on the contrary, for off-design conditions, the position of laminar-turbulent boundary layer transition is significantly displaced downstream on the suction surface, and a separation occurs from the leading edge on the pressure surface. As expected, larger Reynolds number gives higher heat transfer coefficients on both sides of the OGV.


Author(s):  
Barton L. Smith ◽  
Jack J. Stepan ◽  
Donald M. McEligot

The results of flow experiments performed in a cylinder array designed to mimic a VHTR Nuclear Plant lower plenum design are presented. Pressure drop and velocity field measurements were made. Based on these measurements, five regimes of behavior are identified that are found to depend on Reynolds number. It is found that the recirculation region behind the cylinders is shorter than that of half cylinders placed on the wall representing the symmetry plane. Unlike a single cylinder, the separation point is found to always be on the rear of the cylinders, even at very low Reynolds number. Boundary layer transition is found to occur at much lower Reynolds numbers than previously reported.


1959 ◽  
Vol 63 (588) ◽  
pp. 722-722
Author(s):  
R. L. Dommett

It has been found that there is a critical height for “sandpaper” type roughness below which no measurable disturbances are introduced into a laminar boundary layer and above which transition is initiated at the roughness. Braslow and Knox have proposed a method of predicting this height, for flow over a flat plate or a cone, using exact solutions of the laminar boundary layer equations combined with a correlation of experimental results in terms of a Reynolds number based on roughness height, k, and local conditions at the top of the elements. A simpler, yet more general, method can be constructed by taking additional advantage of the linearity of the velocity profile near the wall in a laminar boundary layer.


1990 ◽  
Vol 34 (01) ◽  
pp. 38-47
Author(s):  
R. Latorre ◽  
R. Baubeau

One of the difficulties in hydrofoil model tests is the relatively low Reynolds number of the test piece and the presence of the test section walls. This paper presents the results of systematic calculations of the potential flow field of NA 4412 and NACA 16-012 hydrofoil in a test section with wall-to-chord ratios h/c -1.0. The corresponding boundary-layer calculations using the CERT calculation scheme are presented to show the influence of the nearby walls on shifting the location of the boundary-layer laminar-turbulent separation as well as turbulent separation. By introducing an effective angle of attack, it is possible to obtain close agreement in the calculated and measured suction side pressure distortion as well as the locations of the boundary-layer separation and transition.


1977 ◽  
Vol 82 (3) ◽  
pp. 583-604 ◽  
Author(s):  
Michael S. Kolansky ◽  
Sheldon Weinbaum ◽  
Robert Pfeffer

In Weinbaum et al. (1976) a simple new pressure hypothesis is derived which enables one to take account of the displacement interaction, the geometrical change in streamline radius of curvature and centrifugal effects in the thick viscous layers surrounding two-dimensional bluff bodies in the intermediate Reynolds number range O(1) < Re < O(102) using conventional Prandtl boundary-layer equations. The new pressure hypothesis states that the streamwise pressure gradient as a function of distance from the forward stagnation point on the displacement body is equal to the wall pressure gradient as a function of distance along the original body. This hypothesis is shown to be equivalent to stretching the streamwise body co-ordinate in conventional first-order boundary-layer theory. The present investigation shows that the same pressure hypothesis applies for the intermediate Reynolds number flow past axisymmetric bluff bodies except that the viscous term in the conventional axisymmetric boundary-layer equation must also be modified for transverse curvature effects O(δ) in the divergence of the stress tensor. The approximate solutions presented for the location of separation and the detailed surface pressure and vorticity distribution for the flow past spheres, spheroids and paraboloids of revolution at various Reynolds numbers in the range O(1) < Re < O(102) are in good agreement with available numerical Navier–Stokes solutions.


Sign in / Sign up

Export Citation Format

Share Document