Sound production at the edge of a steady flow

1974 ◽  
Vol 66 (4) ◽  
pp. 791-816 ◽  
Author(s):  
J. E. Ffowcs Williams

The theory initiated by Lighthill (1952) to describe the sound radiated by turbulence embedded in an uniform fluid at rest is here extended to the case where the turbulence exists on the edge of a uniformly moving stream. An exact analogy is developed between the distant real sound field and that which would be radiated by a particular quadrupole distribution adjacent to a vortex sheet positioned in the linearly disturbed flow. The equivalent sources in this analogy are quadrupoles identical in strength with those in Lighthill's model, but the quadrupoles are now shown to convect with the fluid-particle velocity. There is no amplifying effect of shear. The particular case of a plane shear layer is worked out in detail for sound waves of scale large in comparison with the shear-layer thickness.A downstream zone of silence is predicted as is the formation of highly directional beams associated with the interference of sound radiated directly and sound reflected from the fluid interface. A distinct structure results in which the variation of sound with flow velocity, density and angle is not easily accounted for by simple power-law scaling. Finally a comparison is made with some features of jet noise; the modelling of the high frequency jet noise problem by a single shear layer yields some features consistent with experiment.

2000 ◽  
Vol 404 ◽  
pp. 27-46 ◽  
Author(s):  
J. E. FFOWCS WILLIAMS ◽  
W. MÖHRING

The possibility of acoustic control of the two-dimensional instabilities of a lossless plane shear layer of vanishing thickness is studied. The shear layer is formed from a body of incompressible fluid sliding over another fluid at rest. It is unstable through the generation of Kelvin–Helmholtz waves. We consider the possibility of adding to this linearly unstable flow a simple source, driven in such a way that its field interferes destructively with the instability to render the flow stable. The required strength of the unsteady control source is determined in terms of the fluctuating velocity at some fixed position in the moving fluid. We show that no unstable Kelvin–Helmholtz wave could survive the action of such a source. Next, we examine the scope for constructing the control signal from a measurement of the flow velocity at some fixed position. The source is a linear functional of the monitored velocity and we give the transfer function that would be required for the instabilities to be controlled. We prove that such control action would completely stabilize the otherwise unstable vortex sheet, and that other alternative sensor/actuator arrangements could also be effective. We go on to show that our particular very simple arrangement could not in fact be realized because, if required to work at all frequencies, it would not be causal. If we insisted on causality the vortex sheet would then only be stabilized over most frequencies. That would of course make the controlled flow completely different from the vortex sheet whose instabilities are so well known – and troublesome. We conjecture that there will exist some variations of the basic control arrangement described here that are both physically realizable and effective over the required frequency range. From our study of the initial value problem we have concluded that short perturbations would be attenuated very rapidly.


A fixed line source, oscillating harmonically in time, produces sound waves which fall on a two dimensional shear layer in which the velocity increases linearly over a finite distance and then remains constant. The linearized theory of sound allows a multiplicity of solutions. The ambiguity is resolved by an application of the principle of causality. As a result it is found that, for Strouhal numbers below a certain critical level, Helmholtz instability is evident but not if the Strouhal number is above critical. The instability wave fans out from a negligibly small region as the Strouhal number drops from critical until it occupies a wedge of 45° when the layer simplifies to a vortex sheet. The limit is the same as that derived by direct analysis of the vortex sheet but no ultra-distributions are necessary if the layer is not infinitesimally thin. Various other aspects of thin and thick layers are also discussed.


Author(s):  
Ying-Hui Jia ◽  
Fang-Fang Li ◽  
Kun Fang ◽  
Guang-Qian Wang ◽  
Jun Qiu

AbstractRecently strong sound wave was proposed to enhance precipitation. The theoretical basis of this proposal has not been effectively studied either experimentally or theoretically. Based on the microscopic parameters of atmospheric cloud physics, this paper solved the complex nonlinear differential equation to show the movement characteristics of cloud droplets under the action of sound waves. The motion process of individual cloud droplet in a cloud layer in the acoustic field is discussed as well as the relative motion between two cloud droplets. The effects of different particle sizes and sound field characteristics on particle motion and collision are studied to analyze the dynamic effects of thunder-level sound waves on cloud droplets. The amplitude of velocity variation has positive correlation with Sound Pressure Level (SPL) and negative correlation with the frequency of the surrounding sound field. Under the action of low-frequency sound waves with sufficient intensity, individual cloud droplets could be forced to oscillate significantly. The droplet smaller than 40μm can be easily driven by sound waves of 50 Hz and 123.4 dB. The calculation of the collision process of two droplets reveals that the disorder of motion for polydisperse droplets is intensified, resulting in the broadening of the collision time range and spatial range. When the acoustic frequency is less than 100Hz (@ 123.4dB) or the Sound Pressure Level (SPL) is greater than 117.4dB (@ 50Hz), the sound wave can affect the collision of cloud droplets significantly. This study provides theoretical perspective of acoustic effect to the microphysics of atmospheric clouds.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3674 ◽  
Author(s):  
Wei Lu ◽  
Yu Lan ◽  
Rongzhen Guo ◽  
Qicheng Zhang ◽  
Shichang Li ◽  
...  

A spiral sound wave transducer comprised of longitudinal vibrating elements has been proposed. This transducer was made from eight uniform radial distributed longitudinal vibrating elements, which could effectively generate low frequency underwater acoustic spiral waves. We discuss the production theory of spiral sound waves, which could be synthesized by two orthogonal acoustic dipoles with a phase difference of 90 degrees. The excitation voltage distribution of the transducer for emitting a spiral sound wave and the measurement method for the transducer is given. Three-dimensional finite element modeling (FEM)of the transducer was established for simulating the vibration modes and the acoustic characteristics of the transducers. Further, we fabricated a spiral sound wave transducer based on our design and simulations. It was found that the resonance frequency of the transducer was 10.8 kHz and that the transmitting voltage resonance was 140.5 dB. The underwater sound field measurements demonstrate that our designed transducer based on the longitudinal elements could successfully generate spiral sound waves.


2013 ◽  
Vol 444-445 ◽  
pp. 462-467
Author(s):  
Dang Guo Yang ◽  
Yong Hang Wu ◽  
Jin Min Liang ◽  
Jun Liu

A numerical simulation method on noise prediction, which incorporates aerodynamics and sound wave equations based on acoustic analogy, is presented in the paper. Near-field unsteady aerodynamic characteristic can be obtain by large eddy simulation (LES), and far-field propagation of sound waves and spatial sound-field can be obtain by solving the time-domain integral equations of Ffowcs Williams and Hawings (FW-H). Based on the method, a numerical simulation was done on a two-dimension cylinder and a three-dimension flat plate with blunt leading edge. The agreement of numerical results with experiment data validated the Feasibility of the method. The results also indicate that LES can describe vortex generation and shedding in the flow-fields, and FW-H formulation, which has taken time-lag between sound emission and reception times into account, can simulate time-effect of sound propagation toward far-fields.


Author(s):  
C. P. Premchand ◽  
Manikandan Raghunathan ◽  
Midhun Raghunath ◽  
K. V. Reeja ◽  
R. I. Sujith ◽  
...  

Abstract The tonal sound production during thermoacoustic instability is detrimental to the components of gas turbine and rocket engines. Identifying the root cause and controlling this oscillatory instability would enable manufacturers to save in costs of power outages and maintenance. An optimal method is to identify the structures in the flow-field that are critical to tonal sound production and perform control measures to disrupt those “critical structures”. Passive control experiments were performed by injecting a secondary micro-jet of air onto the identified regions with critical structures in the flow-field of a bluff-body stabilized, dump, turbulent combustor. Simultaneous measurements such as unsteady pressure, velocity, local and global heat release rate fluctuations are acquired in the regime of thermoacoustic instability before and after control action. The tonal sound production in this combustor is accompanied by a periodic flapping of the shear layer present in the region between the dump plane (backward-facing step) and the leading edge of the bluff-body. We obtain the trajectory of Lagrangian saddle points that dictate the flow and flame dynamics in the shear layer during thermoacoustic instability accurately by computing Lagrangian Coherent Structures. Upon injecting a secondary micro-jet with a mass flow rate of only 4% of the primary flow, nearly 90% suppression in the amplitude of pressure fluctuations are observed. The suppression thus results in sound pressure levels comparable to those obtained during stable operation of the combustor. Using Morlet wavelet transform, we see that the coherence in the dominant frequency of pressure and heat release rate oscillations during thermoacoustic instability is affected by secondary injection. The disruption of saddle point trajectories breaks the positive feedback loop between pressure and heat release rate fluctuations resulting in the observed break of coherence. Wavelet transform of global heat release rate shows a redistribution of energy content from the dominant instability frequency (acoustic time scale) to other time scales.


2021 ◽  
pp. 1-25
Author(s):  
Hanbo Jiang ◽  
Siyang Zhong ◽  
Han Wu ◽  
Xin Zhang ◽  
Xun Huang ◽  
...  

Abstract This paper focuses on the radiation modes and efficiency of propeller tonal noise. The thickness noise and loading noise model of propellers has been formulated in spherical coordinates, thereby simplifying numerical evaluation of the integral noise source. More importantly, the radiation field can be decomposed and projected to spherical harmonics, which can separate source-observer positions and enable an analysis of sound field structures. Thanks to the parity of spherical harmonics, the proposed model can mathematically explain the fact that thrusts only produce antisymmetric sound waves with respect to the rotating plane. In addition, the symmetric components of the noise field can be attributed to the thickness, as well as drags and radial forces acting on the propeller surface. The radiation efficiency of each mode decays rapidly as noise sources approach the rotating centre, suggesting the radial distribution of aerodynamic loadings should be carefully designed for low-noise propellers. The noise prediction model has been successfully applied to a drone propeller and achieved a reliable agreement with experimental measurements. The flow variables employed as an input of the noise computation were obtained with computational fluid dynamics (CFD), and the experimental data were measured in an anechoic chamber.


2018 ◽  
Vol 860 ◽  
pp. 1-4 ◽  
Author(s):  
Jonathan B. Freund

Jet noise prediction is notoriously challenging because only subtle features of the flow turbulence radiate sound. The article by Brès et al. (J. Fluid Mech., vol. 851, 2018, pp. 83–124) shows that a well-constructed modelling procedure for the nozzle turbulence can provide unprecedented sub-dB prediction accuracy with modest-scale large-eddy simulations, as confirmed by detailed comparison with turbulence and sound-field measurements. This both illuminates the essential mechanisms of the flow and facilitates prediction for engineering design.


Sign in / Sign up

Export Citation Format

Share Document