The development and structure of turbulent plane jets

1978 ◽  
Vol 88 (3) ◽  
pp. 563-583 ◽  
Author(s):  
K. W. Everitt ◽  
A. G. Robins

The structure and development of turbulent plane jets in still air and moving streams are described. The nature of the small-scale turbulence cannot be accurately ascertained because of the difficulties inherent in the measurement of dissipation in highly turbulent flows. Although correlation measurements in a jet in still air indicate a large-scale structure which can best be described as ‘local flapping’, measurements in a jet in a moving stream do not reveal a similar structure. The development of the turbulence structure in a jet in a moving parallel stream is described and the properties of turbulent jets and wakes are shown to be reasonably well predicted by the use of a variable-eddy-viscosity formula together with the formal self-preserving properties of the equations of motion.

2021 ◽  
Vol 102 (2) ◽  
pp. 56-67
Author(s):  
A.Zh. Turmukhambetov ◽  
◽  
S.B. Otegenova ◽  
K.A. Aitmanova ◽  

The paper analyzes the results of a theoretical study of quasi-two-dimensional turbulence, two-dimensional equations of motion of which contain additional terms. The regularities of the dynamic interaction of vortex structures in shear turbulent flows of a viscous liquid are established. Based on the model of quasi-twodimensional turbulence, numerical values of the spatial scales of intermittency are determined as an alternation of large-scale and small-scale pulsations of dynamic characteristics. The experimentally observed alternation of vortex structures and the idea of their self-organization form the basis of the assumption of the existence of a geometric parameter determined by the size of the vortex core and the distance between their centers. Therefore, the main attention is paid to the theoretical calculation of the minimum spatial scales of the intermittency of vortex clusters. As a simplification, the vortex pairs are located in a reference frame, relative to which the centers of the vortices are stationary. Thus, the kinematic effect of the transfer of one vortex into the field of another is excluded from consideration. The symmetric and unsymmetric interactions of vortices, taking into account the one-sided and opposite directions of their rotation, are considered as realizable cases. A successful attempt is made to study the influence of the internal structure of vortex clusters on the numerical values of the minimum intermittency scales. The obtained results are satisfactorily confirmed by known theoretical and experimental data. Consequently, they can be used in all practical applications, without exception, where the structure of turbulence is taken into account, as well as for improving and expanding existing semi-empirical theories.


2014 ◽  
Vol 755 ◽  
Author(s):  
S. Paillat ◽  
E. Kaminski

AbstractTurbulent jets and plumes are commonly encountered in industrial and natural environments; they are, for example, key processes during explosive eruptions. They have been the objects of seminal works on turbulent free shear flows. Their dynamics is often described with the concept of the so-called entrainment coefficient, $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\alpha $, which quantifies entrainment of ambient fluid into the turbulent flow. This key parameter is well characterized for axisymmetric jets and plumes, but data are scarcer for turbulent planar plumes and jets. The data tend to show that the Gaussian entrainment coefficient in plane pure plumes is about twice the value for plane pure jets. In order to confirm and to explain this difference, we develop a model of entrainment in turbulent plane jets and plumes taking into account the effect of buoyancy on entrainment, as a function of the shape of the velocity, buoyancy and turbulent shear stress profiles. We perform new experiments to better characterize the rate of entrainment in plane pure plumes and to constrain the values of the model parameters. Comparison between theory and experiments shows that the enhancement of entrainment in plane turbulent pure plumes relative to plane turbulent pure jets is well explained by the contribution of buoyancy.


1999 ◽  
Vol 394 ◽  
pp. 261-279 ◽  
Author(s):  
ROBERTO VERZICCO ◽  
JAVIER JIMÉNEZ

This paper discusses numerical experiments in which an initially uniform columnar vortex is subject to several types of axisymmetric forcing that mimic the strain field of a turbulent flow. The mean value of the strain along the vortex axis is in all cases zero, and the vortex is alternately stretched and compressed. The emphasis is on identifying the parameter range in which the vortex survives indefinitely. This extends previous work in which the effect of steady single-scale non-uniform strains was studied. In a first series of experiments the effect of the unsteadiness of the forcing is analysed, and it is found that the vortex survives as a compact object if the ratio between the oscillation frequency and the strain itself is low enough. A theoretical explanation is given which agrees with the numerical results. The strain is then generalized to include several spatial scales and oscillation frequencies, with characteristics similar to those in turbulent flows. The largest velocities are carried by the large scales, while the highest gradients and faster time scales are associated with the shorter wavelengths. Also in these cases ‘infinitely long’ vortices are obtained which are more or less uniform and compact. Vorticity profiles averaged along their axes are approximately Gaussian. The radii obtained from these profiles are proportional to the Burgers' radius of the r.m.s. (small-scale) axial strain, while the azimuthal velocities are proportional to the maximum (large-scale) axial velocity differences. The study is motivated by previous observations of intense vortex filaments in turbulent flows, and the scalings found in the present experiments are consistent with those found in the turbulent simulations.


This paper reviews how Kolmogorov postulated for the first time the existence of a steady statistical state for small-scale turbulence, and its defining parameters of dissipation rate and kinematic viscosity. Thence he made quantitative predictions of the statistics by extending previous methods of dimensional scaling to multiscale random processes. We present theoretical arguments and experimental evidence to indicate when the small-scale motions might tend to a universal form (paradoxically not necessarily in uniform flows when the large scales are gaussian and isotropic), and discuss the implications for the kinematics and dynamics of the fact that there must be singularities in the velocity field associated with the - 5/3 inertial range spectrum. These may be particular forms of eddy or ‘eigenstructure’ such as spiral vortices, which may not be unique to turbulent flows. Also, they tend to lead to the notable spiral contours of scalars in turbulence, whose self-similar structure enables the ‘box-counting’ technique to be used to measure the ‘capacity’ D K of the contours themselves or of their intersections with lines, D' K . Although the capacity, a term invented by Kolmogorov (and studied thoroughly by Kolmogorov & Tikhomirov), is like the exponent 2 p of a spectrum in being a measure of the distribution of length scales ( D' K being related to 2 p in the limit of very high Reynolds numbers), the capacity is also different in that experimentally it can be evaluated at local regions within a flow and at lower values of the Reynolds number. Thus Kolmogorov & Tikhomirov provide the basis for a more widely applicable measure of the self-similar structure of turbulence. Finally, we also review how Kolmogorov’s concept of the universal spatial structure of the small scales, together with appropriate additional physical hypotheses, enables other aspects of turbulence to be understood at these scales; in particular the general forms of the temporal statistics such as the high-frequency (inertial range) spectra in eulerian and lagrangian frames of reference, and the perturbations to the small scales caused by non-isotropic, non-gaussian and inhomogeneous large-scale motions.


2000 ◽  
Vol 1 (2) ◽  
pp. 209-227 ◽  
Author(s):  
S Menon

Next-generation gas turbine and internal combustion engines are required to reduce pollutant emissions significantly and also to be fuel efficient. Accurate prediction of pollutant formation requires proper resolution of the spatio-temporal evolution of the unsteady mixing and combustion processes. Since conventional steady state methods are not able to deal with these features, methodology based on large-eddy simulations (LESs) is becoming a viable choice to study unsteady reacting flows. This paper describes a new LES methodology developed recently that has demonstrated a capability to simulate reacting turbulent flows accurately. A key feature of this new approach is the manner in which small-scale turbulent mixing and combustion processes are simulated. This feature allows proper characterization of the effects of both large-scale convection and small-scale mixing on the scalar processes, thereby providing a more accurate prediction of chemical reaction effects. LESs of high Reynolds number premixed flames in the flamelet regime and in the distributed reaction regime are used to describe the ability of the new subgrid combustion model.


Author(s):  
Tarek Abdel-Salam ◽  
Gerald Micklow ◽  
Keith Williamson

The current study reports numerical analysis of turbulent jets. Effects of various parameters on the characteristics of two-dimensional turbulent plane parallel and offset jets are investigated. The emphasis is put on the effect of the wall angle and nozzle width on the location merging and the combining points. The flowfield under consideration are two-parallel plane jets and offset jets issued from plane wall. Four angles and three values of the nozzle width are used. Also, different values of Reynolds number between 9000 and 39000 have been examined. It is noted that the wall angle and the nozzle width linearly affect the location of the merging and the combining points, while Reynolds number plays no role in their location. The effect of the wall angle on the reattachment point is found to be non linear.


2017 ◽  
Vol 824 ◽  
Author(s):  
X. I. A. Yang ◽  
A. Lozano-Durán

The cascading process of turbulent kinetic energy from large-scale fluid motions to small-scale and lesser-scale fluid motions in isotropic turbulence may be modelled as a hierarchical random multiplicative process according to the multifractal formalism. In this work, we show that the same formalism might also be used to model the cascading process of momentum in wall-bounded turbulent flows. However, instead of being a multiplicative process, the momentum cascade process is additive. The proposed multifractal model is used for describing the flow kinematics of the low-pass filtered streamwise wall-shear stress fluctuation $\unicode[STIX]{x1D70F}_{l}^{\prime }$, where $l$ is the filtering length scale. According to the multifractal formalism, $\langle {\unicode[STIX]{x1D70F}^{\prime }}^{2}\rangle \sim \log (Re_{\unicode[STIX]{x1D70F}})$ and $\langle \exp (p\unicode[STIX]{x1D70F}_{l}^{\prime })\rangle \sim (L/l)^{\unicode[STIX]{x1D701}_{p}}$ in the log-region, where $Re_{\unicode[STIX]{x1D70F}}$ is the friction Reynolds number, $p$ is a real number, $L$ is an outer length scale and $\unicode[STIX]{x1D701}_{p}$ is the anomalous exponent of the momentum cascade. These scalings are supported by the data from a direct numerical simulation of channel flow at $Re_{\unicode[STIX]{x1D70F}}=4200$.


Author(s):  
Steven A. Orszag ◽  
I. Staroselsky,

The renormalization group (RNG) and related e-expansion methods are a powerful technique that allow the systematic derivation of coarse-grained equations of motion for turbulent flows and, in particular, the derivation of sophisticated turbulence models based on the fundamental underlying physics. The RNG method provides a convenient calculus for the analysis of complex physical effects in complex flows. The details of the RNG method applied to fluid mechanics differ in some crucial respects from how renormalization group techniques are applied to field theories in other branches of physics. At the present time, the RNG methods for fluid dynamics are by no means rigorously justified, so their utility must be based on the quality and quantity of results to which they lead. In this paper we discuss the basis for the RNG method and then illustrate its application to a variety of turbulent flow problems, emphasizing those points where further analysis is needed. The application of a field-theoretic method like the RNG technique to turbulence is based on the fundamental assumption of universality of small scales in turbulent flows. Such universal behavior was first suggested over 50 years ago in the seminal work of A. N. Kolmogorov who argued that the small-scale spectrum of incompressible turbulence is universal and characterized by two numbers, the rate of energy dissipation ε per unit mass and the kinematic viscosity v.


1985 ◽  
Vol 9 (4) ◽  
pp. 200-209
Author(s):  
Michail Zak

The necessity of model reformulation in elasticity results from the failure of hyperbolicity of the governing equations of motion for classical models. The reformulation is based upon the introduction of additional kinematical microstructures in the form of multivalued displacement and velocity field (or fractal functions) which arc generated by the mechanism of the instability. The small scale motions describing this microstructure interact with the original large scale motion and restore the hyperbolicity of new governing equations of motion. The applications of the reformulated models to the problem of vibrational control and impact energy absorption are discussed.


1986 ◽  
Vol 163 ◽  
pp. 365-391 ◽  
Author(s):  
R. A. Antonia ◽  
F. Anselmet ◽  
A. J. Chambers

Following a review of the difficulties associated with the measurement and interpretation of statistics of the small-scale motion, the evidence for and against local isotropy is assessed in the light of measurements in a turbulent plane jet at moderate values of the Reynolds and Péclet numbers. These measurements include spatial derivatives with respect to different spatial directions of the longitudinal velocity fluctuation and of the temperature fluctuation. Relations between mean-square values of these derivatives suggest strong departures from local isotropy for both velocity and temperature. In contrast, the locally isotropic forms of the vorticity and temperature dissipation budgets are approximately satisfied. Possible contamination of the fine-scale measurements by the anisotropic large-scale motion is assessed in the context of the measured structure functions of temperature and of the measured skewness of the streamwise derivative of temperature. Structure functions are, within the framework of local isotropy, consistent with the average frequency and amplitude of temperature signatures that characterize the quasi-organized large-scale motion. Conditional averages associated with this motion account, in an approximate way, for the skewness of the temperature derivative but make negligible contributions to the skewness of velocity derivatives. The degree of spatial organization of the fine structure is inferred from conditional statistics of temperature derivatives.


Sign in / Sign up

Export Citation Format

Share Document