Natural convection in porous media

1985 ◽  
Vol 150 ◽  
pp. 89-119 ◽  
Author(s):  
V. Prasad ◽  
F. A. Kulacki ◽  
M. Keyhani

Experimental results on free convection in a vertical annulus filled with a saturated porous medium are reported for height-to-gap ratios of 1.46, 1 and 0.545, and radius ratio of 5.338. In these experiments, the inner and outer walls are maintained at constant temperatures. The use of several fluid–solid combinations indicates a divergence in the Nusselt-number–Rayleigh-number relation, as also reported by previous investigators for horizontal layers and vertical cavities. The reason for this divergence is the use of the stagnant thermal conductivity of the fluid-filled solid matrix. A simple model is presented to obtain an effective thermal conductivity as a function of the convective state, and thereby eliminate the aforementioned divergence. A reasonable agreement between experimentally and theoretically determined Nusselt numbers is then achieved for the present and previous experimental results. It is thus concluded that a unique relationship exists between the Nusselt and Rayleigh numbers unless Darcy's law is inapplicable. The factors that influence the breakdown of Darcian behaviour are characterized and their effects on heat-transfer rates are explained. It is observed that, once the relation between the Nusselt and Rayleigh numbers branches out from that obtained via the mathematical formulation based on Darcy's law, its slope approaches that for a fluid-filled enclosure of the same geometry when the Rayleigh number is large enough. An iterative scheme is also presented for estimation of effective thermal conductivity of a saturated porous medium by using the existing results for overall heat transfer.

Author(s):  
Degan Gerard ◽  
Sokpoli Amavi Ernest ◽  
Akowanou Djidjoho Christian ◽  
Vodounnou Edmond Claude

This research was devoted to the analytical study of heat transfer by natural convection in a vertical cavity, confining a porous medium, and containing a heat source. The porous medium is hydrodynamically anisotropic in permeability whose axes of permeability tensor are obliquely oriented relative to the gravitational vector and saturated with a Newtonian fluid. The side walls are cooled to the temperature  and the horizontal walls are kept adiabatic. An analytical solution to this problem is found for low Rayleigh numbers by writing the solutions of mathematical model in polynomial form of degree n of the Rayleigh number. Poisson equations obtained are solved by the modified Galerkin method. The results are presented in term of streamlines and isotherms. The distribution of the streamlines and the temperature fields are greatly influenced by the permeability anisotropy parameters and the thermal conductivity. The heat transfer decreases considerably when the Rayleigh number increases.


2018 ◽  
Vol 29 (10) ◽  
pp. 1850097 ◽  
Author(s):  
Abderrahmane Baïri ◽  
Najib Laraqi

This three-dimensional (3D) numerical work based on the volume control method quantifies the convective heat transfer occurring in a hemispherical cavity filled with a ZnO–H2O nanofluid saturated porous medium. Its main objective is to improve the cooling of an electronic component contained in this enclosure. The volume fraction of the considered monophasic nanofluid varies between 0% (pure water) and 10%, while the cupola is maintained isothermal at cold temperature. During operation, the active device generates a heat flux leading to high Rayleigh number reaching [Formula: see text] and may be inclined with respect to the horizontal plane at an angle ranging from 0[Formula: see text] to 180[Formula: see text] (horizontal position with cupola facing upwards and downwards, respectively) by steps of 15[Formula: see text]. The natural convective heat transfer represented by the average Nusselt number has been quantified for many configurations obtained by combining the tilt angle, the Rayleigh number, the nanofluid volume fraction and the ratio between the thermal conductivity of the porous medium’s solid matrix and that of the base fluid. This ratio has a significant influence on the free convective heat transfer and ranges from 0 (without porous media) to 70 in this work. The influence of the four physical parameters is analyzed and commented. An empirical correlation between the Nusselt number and these parameters is proposed, allowing determination of the average natural convective heat transfer occurring in the hemispherical cavity.


1972 ◽  
Vol 54 (1) ◽  
pp. 153-161 ◽  
Author(s):  
Enok Palm ◽  
Jan Erik Weber ◽  
Oddmund Kvernvold

For convection in a porous medium the dependence of the Nusselt number on the Rayleigh number is examined to sixth order using an expansion for the Rayleigh number proposed by Kuo (1961). The results show very good agreement with experiment. Additionally, the abrupt change which is observed in the heat transport at a supercritical Rayleigh number may be explained by a breakdown of Darcy's law.


2006 ◽  
Vol 129 (6) ◽  
pp. 727-734 ◽  
Author(s):  
H. Sakamoto ◽  
F. A. Kulacki

Measurements are reported of heat transfer coefficients in steady natural convection on a vertical constant flux plate embedded in a saturated porous medium. Results show that heat transfer coefficients can be adequately determined via a Darcy-based model, and our results confirm a correlation proposed by Bejan [Int. J. Heat Mass Transfer. 26(9), 1339–1346 (1983)]. It is speculated that the reason that the Darcy model works well in the present case is that the porous medium has a lower effective Prandtl number near the wall than in the bulk medium. The factors that contribute to this effect include the thinning of the boundary layer near the wall and an increase of effective thermal conductivity.


1986 ◽  
Vol 108 (3) ◽  
pp. 660-666 ◽  
Author(s):  
D. C. Reda

Natural convection heat transfer from a constant-flux cylinder, immersed vertically through a stratified (two-layer) liquid-saturated porous medium, was investigated experimentally. Measured radial temperature profiles and heat transfer rates agreed well with numerical predictions based on the work of Hickox and Gartling. The 1:6 permeability-ratio interface existing between the two layers was found to effectively trap buoyancy-driven fluid motion within the high-permeability region, beneath the interface. Within this high-permeability region, Nusselt number versus Rayleigh number data were found to correlate with previously measured results, obtained for the same basic geometry, but with a fully permeable upper-surface hydrodynamic boundary condition. In both cases, the vertical and radial extent of the region under study were large compared to the radius of the heat source. Combined results indicate that, for a given Rayleigh number in the Darcy-flow regime, heat transfer rates from cylinders immersed vertically in uniform liquid-saturated porous media of large vertical and radial extent potentially approach limiting values. Variable-porosity effects which occur in unconsolidated porous media adjacent to solid boundaries were investigated numerically for cases where the particle-to-heater diameter ratio was small (≈ 10−2). Results showed variable-porosity effects to have a negligible influence on the thermal field adjacent to such boundaries under conditions of Darcy flow.


2008 ◽  
Vol 273-276 ◽  
pp. 796-801
Author(s):  
L.B.Y. Aldabbagh ◽  
Mohsen Sharifpur ◽  
Mahdi Zamani

A set of experiments is done to study the phenomenon of free convection heat transfer from an isothermal vertical flat plate embedded in a saturated porous medium in steady state condition. The porous medium consisting of 0.8 cm spheres. The aspect ratio of the isothermal flat plate, H/W, is equal to 2. Where H is the height and W is the width of the vertical plate. The investigations were cared out for Darcy modified Rayleigh number between 100 and 500. The results indicate that heat transfer increases linearly with increasing the Darcy modified Rayleigh number. In addition, the present results are in good agreement with the higher-order boundary layer theory obtained by Cheng and Hsu [1].


1993 ◽  
Vol 254 ◽  
pp. 345-362 ◽  
Author(s):  
Carol Braester ◽  
Peter Vadasz

The results of an investigation on the effect of a weak heterogeneity of a porous medium on natural convection are presented. A medium heterogeneity is represented by spatial variations of the permeability and of the effective thermal conductivity. As a general rule the existence of horizontal thermal gradients in heterogeneous porous media provides a sufficient condition for the occurrence of natural convection. The implications of this condition are investigated for horizontal layers or rectangular domains subject to isothermal top and bottom boundary conditions. Results lead to a restriction on the classes of thermal conductivity functions which allow a motionless solution. Analytical solutions for rectangular weak heterogeneous porous domains heated from below, consistent with a basic motionless solution, are obtained by applying the weak nonlinear theory. The amplitude of the convection is obtained from an ordinary non-homogeneous differential equation, with a forcing term representative of the medium heterogeneity with respect to the effective thermal conductivity. A smooth transition through the critical Rayleigh number is obtained, thus removing a bifurcation which usually appears in homogeneous domains with perfect boundaries, at the critical value of the Rayleigh number. Within a certain range of slightly supercritical Rayleigh numbers, a symmetric thermal conductivity function is shown to reinforce a symmetrical flow while antisymmetric functions favour an antisymmetric flow. Except for the higher-order solutions, the weak heterogeneity with respect to permeability plays a relatively passive role and does not affect the solutions at the leading order. In contrast, the weak heterogeneity with respect to the effective thermal conductivity does have a significant effect on the resulting flow pattern.


Sign in / Sign up

Export Citation Format

Share Document