A plate oscillating across a liquid interface: effects of contact-angle hysteresis

1987 ◽  
Vol 174 ◽  
pp. 327-356 ◽  
Author(s):  
G. W. Young ◽  
S. H. Davis

We consider the oscillatory motion of a solid plate into and out of a bath of liquid. Assuming that the displacement amplitude of the plate motion is small and that the capillary number is small, the problem reduces to solving an interfacial boundaryvalue problem for the response of the contact line. The characteristic contact angle versus contact-line speed relationship includes contact-angle hysteresis which is assumed small and comparable to the amplitude of the plate motion. Sinusoidal and square-wave plate motions are considered. We find that the contact line moves with the plate if the contact line is fixed, but has relative motion otherwise. It would then advance part of the time, recede part of the time, and remain stationary in the transition periods. Further, we find that both contact-angle hysteresis and steepening of the contact angle with increasing contact-line speed are dissipative effects.

Langmuir ◽  
2011 ◽  
Vol 27 (11) ◽  
pp. 6890-6896 ◽  
Author(s):  
Siang-Jie Hong ◽  
Feng-Ming Chang ◽  
Tung-He Chou ◽  
Seong Heng Chan ◽  
Yu-Jane Sheng ◽  
...  

2020 ◽  
Vol 229 (10) ◽  
pp. 1945-1977 ◽  
Author(s):  
Yulii D. Shikhmurzaev

Abstract After a brief overview of the ‘moving contact-line problem’ as it emerged and evolved as a research topic, a ‘litmus test’ allowing one to assess adequacy of the mathematical models proposed as solutions to the problem is described. Its essence is in comparing the contact angle, an element inherent in every model, with what follows from a qualitative analysis of some simple flows. It is shown that, contrary to a widely held view, the dynamic contact angle is not a function of the contact-line speed as for different spontaneous spreading flows one has different paths in the contact angle-versus-speed plane. In particular, the dynamic contact angle can decrease as the contact-line speed increases. This completely undermines the search for the ‘right’ velocity-dependence of the dynamic contact angle, actual or apparent, as a direction of research. With a reference to an earlier publication, it is shown that, to date, the only mathematical model passing the ‘litmus test’ is the model of dynamic wetting as an interface formation process. The model, which was originated back in 1993, inscribes dynamic wetting into the general physical context as a particular case in a wide class of flows, which also includes coalescence, capillary breakup, free-surface cusping and some other flows, all sharing the same underlying physics. New challenges in the field of dynamic wetting are discussed.


Author(s):  
Fangjun Hong ◽  
Ping Cheng ◽  
Zhen Sun ◽  
Huiying Wu

In this paper, the electrowetting dynamics of a droplet on a dielectric surface was investigated numerically by a mathematical model including dynamic contact angle and contact angle hysteresis. The fluid flow is described by laminar N-S equation, the free surface of the droplet is modeled by the Volume of Fluid (VOF) method, and the electrowetting force is incorporated by exerting an electrical force on the cells at the contact line. The Kilster’s model that can deal with both receding and advancing contact angle is adopted. Numerical results indicate that there is overshooting and oscillation of contact radius in droplet spreading process before it ceases the movement when the excitation voltage is high; while the overshooting is not observed for low voltage. The explanation for the contact line overshooting and some special characteristics of variation of contact radius with time were also conducted.


2007 ◽  
Vol 579 ◽  
pp. 63-83 ◽  
Author(s):  
JACCO H. SNOEIJER ◽  
BRUNO ANDREOTTI ◽  
GILES DELON ◽  
MARC FERMIGIER

The relaxation of a dewetting contact line is investigated theoretically in the so-called ‘Landau–Levich’ geometry in which a vertical solid plate is withdrawn from a bath of partially wetting liquid. The study is performed in the framework of lubrication theory, in which the hydrodynamics is resolved at all length scales (from molecular to macroscopic). We investigate the bifurcation diagram for unperturbed contact lines, which turns out to be more complex than expected from simplified ‘quasi-static’ theories based upon an apparent contact angle. Linear stability analysis reveals that below the critical capillary number of entrainment, Cac, the contact line is linearly stable at all wavenumbers. Away from the critical point, the dispersion relation has an asymptotic behaviour σ∝|q| and compares well to a quasi-static approach. Approaching Cac, however, a different mechanism takes over and the dispersion evolves from ∼|q| to the more common ∼q2. These findings imply that contact lines cannot be described using a universal relation between speed and apparent contact angle, but viscous effects have to be treated explicitly.


2002 ◽  
Vol 467 ◽  
pp. 1-17 ◽  
Author(s):  
L. M. HOCKING ◽  
S. H. DAVIS

Capillarity is an important feature in controlling the spreading of liquid drops and in the coating of substrates by liquid films. For thin films and small contact angles, lubrication theory enables the analysis of the motion to be reduced to single evolution equations for the heights of the drops or films, provided the inertia of the liquid can be neglected. In general, the presence of inertia destroys the major simplification provided by lubrication theory, but two special cases that can be treated are identified here. In the first example, the approach of a drop to its equilibrium position is studied. For sufficiently low Reynolds numbers, the rate of approach to the terminal state and the contact angle are slightly reduced by inertia, but, above a critical Reynolds number, the approach becomes oscillatory. In the latter case there is no simple relation connecting the dynamic contact angle and contact-line speed. In the second example, the spreading drop is supported by a plate that is forced to oscillate in its own plane. For the parameter range considered, the mean spreading is unaffected by inertia, but the oscillatory motion of the contact line is reduced in magnitude as inertia increases, and the drop lags behind the plate motion. The oscillatory contact angle increases with inertia, but is not in phase with the plate oscillation.


1996 ◽  
Vol 307 ◽  
pp. 167-190 ◽  
Author(s):  
Xiaofan Li ◽  
C. Pozrikidis

The hydrostatic shape, transient deformation, and asymptotic shape of a small liquid drop with uniform surface tension adhering to a planar wall subject to an overpassing simple shear flow are studied under conditions of Stokes flow. The effects of gravity are considered to be negligible, and the contact line is assumed to have a stationary circular or elliptical shape. In the absence of shear flow, the drop assumes a hydrostatic shape with constant mean curvature. Families of hydrostatic shapes, parameterized by the drop volume and aspect ratio of the contact line, are computed using an iterative finite-difference method. The results illustrate the effect of the shape of the contact line on the distribution of the contact angle around the base, and are discussed with reference to contact-angle hysteresis and stability of stationary shapes. The transient deformation of a drop whose viscosity is equal to that of the ambient fluid, subject to a suddenly applied simple shear flow, is computed for a range of capillary numbers using a boundary-integral method that incorporates global parameterization of the interface and interfacial regriding at large deformations. Critical capillary numbers above which the drop exhibits continued deformation, or the contact angle increases beyond or decreases below the limits tolerated by contact angle hysteresis are established. It is shown that the geometry of the contact line plays an important role in the transient and asymptotic behaviour at long times, quantified in terms of the critical capillary numbers for continued elongation. Drops with elliptical contact lines are likely to dislodge or break off before drops with circular contact lines. The numerical results validate the assumptions of lubrication theory for flat drops, even in cases where the height of the drop is equal to one fifth the radius of the contact line.


2018 ◽  
Vol 145 ◽  
pp. 03006
Author(s):  
Stanimir Iliev ◽  
Nina Pesheva ◽  
Pavel Iliev

In this work we present preliminary results from our numerical study of the shapes of a liquid meniscus in contact with doubly sinusoidal rough surfaces in Wenzel’s wetting regime. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes for a broad interval of surface roughness factors. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of physical defects. We find that depending on the mutual disposition of the contact line and the lattice of periodic defects, different stick-slip behaviors of the contact line depinning mechanism appear, leading to different values of the contact angle hysteresis.


1983 ◽  
Vol 137 ◽  
pp. 1-29 ◽  
Author(s):  
E. B. Dussan V. ◽  
Robert Tao-Ping Chow

It is common knowledge that relatively small drops or bubbles have a tendency to stick to the surfaces of solids. Two specific problems are investigated: the shape of the largest drop or bubble that can remain attached to an inclined solid surface; and the shape and speed at which it moves along the surface when these conditions are exceeded. The slope of the fluid-fluid interface relative to the surface of the solid is assumed to be small, making it possible to obtain results using analytic techniques. It is shown that from both a physical and mathematical point of view contact-angle hysteresis, i.e. the ability of the position of the contact line to remain fixed as long as the value of the contact angle θ lies within the interval θR [les ] θ [les ] θA, where θA [nequiv ] θR, emerges as the single most important characteristic of the system.


Sign in / Sign up

Export Citation Format

Share Document