Gravity currents over porous substrates

1998 ◽  
Vol 366 ◽  
pp. 239-258 ◽  
Author(s):  
L. P. THOMAS ◽  
B. M. MARINO ◽  
P. F. LINDEN

Results of laboratory experiments are presented in which a fixed volume of homogeneous fluid is suddenly released into another fluid of slightly lower density, over a horizontal thin metallic grid placed a given distance above the solid bottom of a rectangular-cross-section channel. Dense liquid develops as a gravity current over the grid at the same time as it partially flows downwards. The results show that the gravity current loses mass at an exponential rate through the porous substrate with a time constant τ; the front velocity and the head of the current also decrease exponentially. The loss of mass dominates the flow and, in contrast to gravity currents running over solid bottoms, no self-similar inertial regime seems to be developed. A simple model is introduced to explain the scaling law of the loss of mass and the evolution of the front position. The flow evolution depends on the characteristic time of the initial (slumping) phase and the time constant τ, related to the initial conditions and the permeability of the porous substrate, respectively. Qualitative comparisons with other gravity currents with loss of mass, such as particle-driven gravity currents, are provided.

2016 ◽  
Vol 801 ◽  
pp. 65-90 ◽  
Author(s):  
Roiy Sayag ◽  
Jerome A. Neufeld

We study the propagation of viscous gravity currents over a thin porous substrate with finite capillary entry pressure. Near the origin, where the current is deep, propagation of the current coincides with leakage through the substrate. Near the nose of the current, where the current is thin and the fluid pressure is below the capillary entry pressure, drainage is absent. Consequently the flow can be characterised by the evolution of drainage and fluid fronts. We analyse this flow using numerical and analytical techniques combined with laboratory-scale experiments. At early times, we find that the position of both fronts evolve as $t^{1/2}$, similar to an axisymmetric gravity current on an impermeable substrate. At later times, the growing effect of drainage inhibits spreading, causing the drainage front to logarithmically approach a steady position. In contrast, the asymptotic propagation of the fluid front is quasi-self-similar, having identical structure to the solution of gravity currents on an impermeable substrate, only with slowly varying fluid flux. We benchmark these theoretical results with laboratory experiments that are consistent with our modelling assumption, but that also highlight the detailed dynamics of drainage inhibited by finite capillary pressure.


2015 ◽  
Vol 778 ◽  
pp. 669-690 ◽  
Author(s):  
Zhong Zheng ◽  
Sangwoo Shin ◽  
Howard A. Stone

We study the propagation of viscous gravity currents along a thin permeable substrate where slow vertical drainage is allowed from the boundary. In particular, we report the effect of this vertical fluid drainage on the second-kind self-similar solutions for the shape of the fluid–fluid interface in three contexts: (i) viscous axisymmetric gravity currents converging towards the centre of a cylindrical container; (ii) viscous gravity currents moving towards the origin in a horizontal Hele-Shaw channel with a power-law varying gap thickness in the horizontal direction; and (iii) viscous gravity currents propagating towards the origin of a porous medium with horizontal permeability and porosity gradients in power-law forms. For each of these cases with vertical leakage, we identify a regime diagram that characterizes whether the front reaches the origin or not; in particular, when the front does not reach the origin, we calculate the final location of the front. We have also conducted laboratory experiments with a cylindrical lock gate to generate a converging viscous gravity current where vertical fluid drainage is allowed from various perforated horizontal substrates. The time-dependent position of the propagating front is captured from the experiments, and the front position is found to agree well with the theoretical and numerical predictions when surface tension effects can be neglected.


2018 ◽  
Vol 840 ◽  
pp. 579-612
Author(s):  
L. Chiapponi ◽  
M. Ungarish ◽  
S. Longo ◽  
V. Di Federico ◽  
F. Addona

We present theoretical and experimental analyses of the critical condition where the inertial–buoyancy or viscous–buoyancy regime is preserved in a uniform-density gravity current (which propagates over a horizontal plane) of time-variable volume ${\mathcal{V}}=qt^{\unicode[STIX]{x1D6FF}}$ in a power-law cross-section (with width described by $f(z)=bz^{\unicode[STIX]{x1D6FC}}$, where $z$ is the vertical coordinate, $b$ and $q$ are positive real numbers, and $\unicode[STIX]{x1D6FC}$ and $\unicode[STIX]{x1D6FF}$ are non-negative real numbers) occupied by homogeneous or linearly stratified ambient fluid. The magnitude of the ambient stratification is represented by the parameter $S$, with $S=0$ and $S=1$ describing the homogeneous and maximum stratification cases respectively. Earlier theoretical and experimental results valid for a rectangular cross-section ($\unicode[STIX]{x1D6FC}=0$) and uniform ambient fluid are generalized here to a power-law cross-section and stratified ambient. Novel time scalings, obtained for inertial and viscous regimes, allow a derivation of the critical flow parameter $\unicode[STIX]{x1D6FF}_{c}$ and the corresponding propagation rate as $Kt^{\unicode[STIX]{x1D6FD}_{c}}$ as a function of the problem parameters. Estimates of the transition length between the inertial and viscous regimes are also derived. A series of experiments conducted in a semicircular cross-section ($\unicode[STIX]{x1D6FC}=1/2$) validate the critical values $\unicode[STIX]{x1D6FF}_{c}=2$ and $\unicode[STIX]{x1D6FF}_{c}=9/4$ for the two cases $S=0$ and $1$. The ratio between the inertial and viscous forces is determined by an effective Reynolds number proportional to $q$ at some power. The threshold value of this number, which enables a determination of the regime of the current (inertial–buoyancy or viscous–buoyancy) in critical conditions, is determined experimentally for both $S=0$ and $S=1$. We conclude that a very significant generalization of the insights and results from two-dimensional (rectangular cross-section channel) gravity currents to power-law cross-sections is available.


1980 ◽  
Vol 99 (4) ◽  
pp. 785-799 ◽  
Author(s):  
Herbert E. Huppert ◽  
John E. Simpson

Experimental results for the release of a fixed volume of one homogeneous fluid into another of slightly different density are presented. From these results and those obtained by previous experiments, it is argued that the resulting gravity current can pass through three states. There is first a slumping phase, during which the current is retarded by the counterflow in the fluid into which it is issuing. The current remains in this slumping phase until the depth ratio of current to intruded fluid is reduced to less than about 0.075. This may be followed by a (previously investigated) purely inertial phase, wherein the buoyancy force of the intruding fluid is balanced by the inertial force. Motion in the surrounding fluid plays a negligible role in this phase. There then follows a viscous phase, wherein the buoyancy force is balanced by viscous forces. It is argued and confirmed by experiment that the inertial phase is absent if viscous effects become important before the slumping phase has been completed. Relationships between spreading distance and time for each phase are obtained for all three phases for both two-dimensional and axisymmetric geometries. Some consequences of the retardation of the gravity current during the slumping phase are discussed.


2021 ◽  
Author(s):  
Rui M L Ferreira ◽  
Gabriel Solis ◽  
Claudia Adduce ◽  
Ana Margarida Ricardo

<p>Gravity currents propagating over and within porous layers occurs in natural environments and in industrial processes. The particular modes by which the dense fluid flows into the porous layer is a subject that is not sufficiently understood. To overcome this research gap, we conducted laboratory experiments aimed at describing experimentally the dynamics of the drainage flow.</p><p>The experiments were conducted in a horizontal channel with a rectangular cross-section. The channel is 3.0 m long, 0.05 m wide. The porous bottom was composed of 5 cm and 10 cm layers of 3 mm borosilicate spheres – unimodal bed – and of a mixture of 3 mm (50% in weight) and 5 mm spheres (50%) – bi-modal bed. The porosity of the unimodal bed ranged between 0.60 and 0.64 (compatible with loose packing). The porosity of the bi-modal bed ranged between 0.61 and 0.65. All gravity currents were generated by releasing suddenly denser fluid locked by a thin vertical barrier placed at 0.2 m from the channel end. The dense fluid consists in a mixture of freshwater and salt (coloured with Rhodamine) while the ambient fluid is a solution of freshwater and ethanol. The density difference between the ambient fluid and the current, and the need to maintain the same refractive index, determine the amount of salt and alcohol added in each mixture. Here we report the findings of currents with a reduced gravity of 0.06 ms<sup>-2</sup>.</p><p>Each experiment was recorded by an high-speed camera with a frame-rate of 386 Hz and a resolution of 2320 x 1726 pxxpx. Measurements were based on light absorption techniques: a LED light panel 0.3 m high and 0.61 m long was used as back illumination. All images were calibrated to ascribe, pixel by pixel, a concentration value from a 8 bit gray level. Different calibrations were performed for the porous layer and for the surface current.</p><p>Results show that, in the slumping phase, the gravity current flows with velocities compatible with those over rough beds. As the current progresses further attenuation of momentum is noticed owing to mass loss to the porous bed.</p><p>The flow in the porous bed reveals plume instability akin to a Saffman-Taylor instability. The growth of the plumes seems independent from the initial fluid height in both types of porous beds. The wavelength and the growth rate of the plumes depends on the bed material. Plumes grow faster in the case of the bi-modal bed and the wavelength of the bi-modal bed is about 1.5 as that of the unimodal bed. It is hypothesised that the gravity-induced porous flow is best parameterized by a Péclet number defined as a ratio of dispersive (mechanical diffusion) and advective modes of transport. Smaller wavelengths and slower growths are attained for stronger dispersion, characterisitic of the unimodal bed. For bimodal beds, permeability is larger, and thus also advection. This causes the flow to concentrate in faster growing but farther apart plumes.</p><p> </p><p>This research was funded by national funds through Portuguese Foundation for Science and Technology (FCT) project PTDC/CTA-OHR/30561/2017 (WinTherface).</p>


2008 ◽  
Vol 616 ◽  
pp. 327-356 ◽  
Author(s):  
BRIAN L. WHITE ◽  
KARL R. HELFRICH

A steady theory is presented for gravity currents propagating with constant speed into a stratified fluid with a general density profile. Solution curves for front speed versus height have an energy-conserving upper bound (the conjugate state) and a lower bound marked by the onset of upstream influence. The conjugate state is the largest-amplitude nonlinear internal wave supported by the ambient stratification, and in the limit of weak stratification approaches Benjamin's energy-conserving gravity current solution. When the front speed becomes critical with respect to linear long waves generated above the current, steady solutions cannot be calculated, implying upstream influence. For non-uniform stratification, the critical long-wave speed exceeds the ambient long-wave speed, and the critical-Froude-number condition appropriate for uniform stratification must be generalized. The theoretical results demonstrate a clear connection between internal waves and gravity currents. The steady theory is also compared with non-hydrostatic numerical solutions of the full lock release initial-value problem. Some solutions resemble classic gravity currents with no upstream disturbance, but others show long internal waves propagating ahead of the gravity current. Wave generation generally occurs when the stratification and current speed are such that the steady gravity current theory fails. Thus the steady theory is consistent with the occurrence of either wave-generating or steady gravity solutions to the dam-break problem. When the available potential energy of the dam is large enough, the numerical simulations approach the energy-conserving conjugate state. Existing laboratory experiments for intrusions and gravity currents produced by full-depth lock exchange flows over a range of stratification profiles show excellent agreement with the conjugate state solutions.


1975 ◽  
Vol 69 (3) ◽  
pp. 417-443 ◽  
Author(s):  
Peter B. Rhines

Two-dimensional eddies in a homogeneous fluid at large Reynolds number, if closely packed, are known to evolve towards larger scales. In the presence of a restoring force, the geophysical beta-effect, this cascade produces a field of waves without loss of energy, and the turbulent migration of the dominant scale nearly ceases at a wavenumber kβ = (β/2U)½ independent of the initial conditions other than U, the r.m.s. particle speed, and β, the northward gradient of the Coriolis frequency.The conversion of turbulence into waves yields, in addition, more narrowly peaked wavenumber spectra and less fine-structure in the spatial maps, while smoothly distributing the energy about physical space.The theory is discussed, using known integral constraints and similarity solutions, model equations, weak-interaction wave theory (which provides the terminus for the cascade) and other linearized instability theory. Computer experiments with both finite-difference and spectral codes are reported. The central quantity is the cascade rate, defined as \[ T = 2\int_0^{\infty} kF(k)dk/U^3\langle k\rangle , \] where F is the nonlinear transfer spectrum and 〈k〉 the mean wavenumber of the energy spectrum. (In unforced inviscid flow T is simply U−1d〈k〉−1/dt, or the rate at which the dominant scale expands in time t.) T is shown to have a mean value of 3·0 × 10−2 for pure two-dimensional turbulence, but this decreases by a factor of five at the transition to wave motion. We infer from weak-interaction theory even smaller values for k [Lt ] kβ.After passing through a state of propagating waves, the homogeneous cascade tends towards a flow of alternating zonal jets which, we suggest, are almost perfectly steady. When the energy is intermittent in space, however, model equations show that the cascade is halted simply by the spreading of energy about space, and then the end state of a zonal flow is probably not achieved.The geophysical application is that the cascade of pure turbulence to large scales is defeated by wave propagation, helping to explain why the energy-containing eddies in the ocean and atmosphere, though significantly nonlinear, fail to reach the size of their respective domains, and are much smaller. For typical ocean flows, $k_{\beta}^{-1} = 70\,{\rm km} $, while for the atmosphere, $k_{\beta}^{-1} = 1000\,{\rm km}$. In addition the cascade generates, by itself, zonal flow (or more generally, flow along geostrophic contours).


1968 ◽  
Vol 31 (2) ◽  
pp. 209-248 ◽  
Author(s):  
T. Brooke Benjamin

This paper presents a broad investigation into the properties of steady gravity currents, in so far as they can be represented by perfect-fluid theory and simple extensions of it (like the classical theory of hydraulic jumps) that give a rudimentary account of dissipation. As usually understood, a gravity current consists of a wedge of heavy fluid (e.g. salt water, cold air) intruding into an expanse of lighter fluid (fresh water, warm air); but it is pointed out in § 1 that, if the effects of viscosity and mixing of the fluids at the interface are ignored, the hydrodynamical problem is formally the same as that for an empty cavity advancing along the upper boundary of a liquid. Being simplest in detail, the latter problem is treated as a prototype for the class of physical problems under study: most of the analysis is related to it specifically, but the results thus obtained are immediately applicable to gravity currents by scaling the gravitational constant according to a simple rule.In § 2 the possible states of steady flow in the present category between fixed horizontal boundaries are examined on the assumption that the interface becomes horizontal far downstream. A certain range of flows appears to be possible when energy is dissipated; but in the absence of dissipation only one flow is possible, in which the asymptotic level of the interface is midway between the plane boundaries. The corresponding flow in a tube of circular cross-section is found in § 3, and the theory is shown to be in excellent agreement with the results of recent experiments by Zukoski. A discussion of the effects of surface tension is included in § 3. The two-dimensional energy-conserving flow is investigated further in § 4, and finally a close approximation to the shape of the interface is obtained. In § 5 the discussion turns to the question whether flows characterized by periodic wavetrains are realizable, and it appears that none is possible without a large loss of energy occurring. In § 6 the case of infinite total depth is considered, relating to deeply submerged gravity currents. It is shown that the flow must always feature a breaking ‘head wave’, and various properties of the resulting wake are demonstrated. Reasonable agreement is established with experimental results obtained by Keulegan and others.


2009 ◽  
Vol 635 ◽  
pp. 361-388 ◽  
Author(s):  
SENG KEAT OOI ◽  
GEORGE CONSTANTINESCU ◽  
LARRY WEBER

Compositional gravity current flows produced by the instantaneous release of a finite-volume, heavier lock fluid in a rectangular horizontal plane channel are investigated using large eddy simulation. The first part of the paper focuses on the evolution of Boussinesq lock-exchange gravity currents with a large initial volume of the release during the slumping phase in which the front of the gravity current propagates with constant speed. High-resolution simulations are conducted for Grashof numbers $\sqrt {Gr}$ = 3150 (LGR simulation) and $\sqrt {Gr}$ = 126000 (HGR simulation). The Grashof number is defined with the channel depth h and the buoyancy velocity ub = $\sqrt {g'h}$ (g′ is the reduced gravity). In the HGR simulation the flow is turbulent in the regions behind the two fronts. Compared to the LGR simulation, the interfacial billows lose their coherence much more rapidly (over less than 2.5h behind the front), which results in a much faster decay of the large-scale content and turbulence intensity in the trailing regions of the flow. A slightly tilted, stably stratified interface layer develops away from the two fronts. The concentration profiles across this layer can be approximated by a hyperbolic tangent function. In the HGR simulation the energy budget shows that for t > 18h/ub the flow reaches a regime in which the total dissipation rate and the rates of change of the total potential and kinetic energies are constant in time. The second part of the paper focuses on the study of the transition of Boussinesq gravity currents with a small initial volume of the release to the buoyancy–inertia self-similar phase. When the existence of the back wall is communicated to the front, the front speed starts to decrease, and the current transitions to the buoyancy–inertia phase. Three high-resolution simulations are performed at Grashof numbers between $\sqrt {Gr}$ = 3 × 104 and $\sqrt {Gr}$ = 9 × 104. Additionally, a calculation at a much higher Grashof number ($\sqrt {Gr}$ = 106) is performed to understand the behaviour of a bottom-propagating current closer to the inviscid limit. The three-dimensional simulations correctly predict a front speed decrease proportional to t−α (the time t is measured from the release time) over the buoyancy–inertia phase, with the constant α approaching the theoretical value of 1/3 as the current approaches the inviscid limit. At Grashof numbers for which $\sqrt {Gr}$ > 3 × 104, the intensity of the turbulence in the near-wall region behind the front is large enough to induce the formation of a region containing streaks of low and high streamwise velocities. The streaks are present well into the buoyancy–inertia phase before the speed of the front decays below values at which the streaks can be sustained. The formation of the velocity streaks induces a streaky distribution of the bed friction velocity in the region immediately behind the front. This distribution becomes finer as the Grashof number increases. For simulations in which the only difference was the value of the Grashof number ($\sqrt {Gr}$ = 4.7 × 104 versus $\sqrt {Gr}$ = 106), analysis of the non-dimensional bed friction velocity distributions shows that the capacity of the gravity current to entrain sediment from the bed increases with the Grashof number. Past the later stages of the transition to the buoyancy–inertia phase, the temporal variations of the potential energy, the kinetic energy and the integral of the total dissipation rate are logarithmic.


Sign in / Sign up

Export Citation Format

Share Document