Cyclone and anticyclone formation in a rotating stratified fluid over a sloping bottom

1999 ◽  
Vol 381 ◽  
pp. 199-223 ◽  
Author(s):  
C. CENEDESE ◽  
P. F. LINDEN

We discuss laboratory experiments with a continuous source or sink of fluid in a two-layer rotating environment which produces anticyclonic and cyclonic vortices, respectively. Experiments were carried out with a sloping bottom in order to simulate the β-effect and they were conducted for different values for the source/sink flow rate Q and the Coriolis parameter f. The Rossby number Ro of these vortices was small but finite and the flow was expected to be quasi-geostrophic. The qualitative behaviour of the anticyclonic and cyclonic vortices was generally similar, but it depended on the flow rate. For low flow rates, a single vortex formed at the source and extended to the west. At higher flow rates, the vortex broke free from the source and moved to the west; this vortex was then followed sequentially by other vortices behaving similarly. The westward velocity U of these vortices was calculated and compared with the speed Us of a linear topographic Rossby wave. For multiple vortices the westward velocities were greater than Us while for a single vortex produced by a low flow rate the velocity was less than Us. Significant asymmetry between the anticyclonic and cyclonic vortices was observed in the transition zone from single to multiple vortices which implies that ageostrophic effects were still present in the flow.

ORL ◽  
2021 ◽  
pp. 1-5
Author(s):  
Jingjing Liu ◽  
Tengfang Chen ◽  
Zhenggang Lv ◽  
Dezhong Wu

<b><i>Introduction:</i></b> In China, nasal cannula oxygen therapy is typically humidified. However, it is difficult to decide whether to suspend nasal cannula oxygen inhalation after the nosebleed has temporarily stopped. Therefore, we conducted a preliminary investigation on whether the use of humidified nasal cannulas in our hospital increases the incidence of epistaxis. <b><i>Methods:</i></b> We conducted a survey of 176,058 inpatients in our hospital and other city branches of our hospital over the past 3 years and obtained information concerning their use of humidified nasal cannulas for oxygen inhalation, nonhumidified nasal cannulas, anticoagulant and antiplatelet drugs, and oxygen inhalation flow rates. This information was compared with the data collected at consultation for epistaxis during these 3 years. <b><i>Results:</i></b> No significant difference was found between inpatients with humidified nasal cannulas and those without nasal cannula oxygen therapy in the incidence of consultations due to epistaxis (χ<sup>2</sup> = 1.007, <i>p</i> &#x3e; 0.05). The same trend was observed among hospitalized patients using anticoagulant and antiplatelet drugs (χ<sup>2</sup> = 2.082, <i>p</i> &#x3e; 0.05). Among the patients with an inhaled oxygen flow rate ≥5 L/min, the incidence of ear-nose-throat (ENT) consultations due to epistaxis was 0. No statistically significant difference was found between inpatients with a humidified oxygen inhalation flow rate &#x3c;5 L/min and those without nasal cannula oxygen therapy in the incidence of ENT consultations due to epistaxis (χ<sup>2</sup> = 0.838, <i>p</i> &#x3e; 0.05). A statistically significant difference was observed in the incidence of ENT consultations due to epistaxis between the low-flow nonhumidified nasal cannula and nonnasal cannula oxygen inhalation groups (χ<sup>2</sup> = 18.428, <i>p</i> &#x3c; 0.001). The same trend was observed between the 2 groups of low-flow humidified and low-flow nonhumidified nasal cannula oxygen inhalation (χ<sup>2</sup> = 26.194, <i>p</i> &#x3c; 0.001). <b><i>Discussion/Conclusion:</i></b> Neither high-flow humidified nasal cannula oxygen inhalation nor low-flow humidified nasal cannula oxygen inhalation will increase the incidence of recurrent or serious epistaxis complications; the same trend was observed for patients who use anticoagulant and antiplatelet drugs. Humidification during low-flow nasal cannula oxygen inhalation can prevent severe and repeated epistaxis to a certain extent.


2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


Author(s):  
Can Kang ◽  
Ning Mao ◽  
Chen Pan ◽  
Yang Zhu ◽  
Bing Li

A low-specific-speed centrifugal pump equipped with long and short blades is studied. Emphasis is placed on the pump performance and inner flow characteristics at low flow rates. Each short blade is intentionally shifted towards the back surface of the neighboring long blade, and the outlet parts of the short blades are uniformly shortened. Unsteady numerical simulation is conducted to disclose inner flow patterns associated with the modified design. Thereby, a comparison is enabled between the two schemes featured by different short blades. Both practical operation data and numerical results support that the deviation and cutting of the short blades can eliminate the positive slope of pump head curve at low flow rates. Therefore, the modification of short blades improves the pump operation stability. Due to the shortening of the outlet parts of the short blades, velocity distributions between impeller outlet and radial diffuser inlet exhibit explicitly altered circumferential flow periodicity. Pressure fluctuations in the radial diffuser are complex in terms of diversified periodicity and amplitudes. Flow rate influences pressure fluctuations in the radial diffuser considerably. As flow rate decreases, the regularity of the orbit of hydraulic loads exerted upon the impeller collapses while hydraulic loads exerted upon the short blades remain circumferentially periodic.


2018 ◽  
Vol 15 (6) ◽  
pp. E94-E99 ◽  
Author(s):  
Ralph Rahme ◽  
Tejaswi D Sudhakar ◽  
Marjan Alimi ◽  
Timothy G White ◽  
Rafael A Ortiz ◽  
...  

Abstract BACKGROUND AND IMPORTANCE Cerebral hyperperfusion syndrome (CHS) is a well-known complication of superficial temporal artery (STA) to middle cerebral artery (MCA) bypass for ischemic cerebrovascular disease. While this argues against “low flow” in the bypass construct, flow rates in the graft have not been previously quantified in the setting of CHS. CLINICAL PRESENTATION A 58-yr-old man presented with recurrent left hemispheric ischemic strokes and fluctuating right hemiparesis and aphasia. Vascular imaging revealed left cervical internal carotid artery occlusion and perfusion imaging confirmed left hemispheric hypoperfusion. After failing to respond to maximal medical therapy, the patient underwent single-barrel STA-MCA bypass. Postoperatively, his symptoms resolved and blood pressure (BP) was strictly controlled within normal range. However, 2 d later, he developed severe expressive aphasia. CTA demonstrated a patent bypass graft and SPECT showed focal hyperperfusion in Broca's speech area. Seizure activity was ruled out. A high graft flow rate of 52 mL/min was documented by quantitative magnetic resonance angiography (MRA). Thus, the diagnosis of CHS was made and managed with strict BP control. The patient exhibited complete recovery of speech over a period of days and was discharged home. Repeat SPECT at 4 mo showed resolution of hyperperfusion and quantitative MRA demonstrated reduction of graft flow rate to 34 mL/min. CONCLUSION This is the first case of perfusion imaging-proven CHS after STA-MCA bypass, where high graft flow rates are objectively documented. Our observations constitute irrefutable evidence challenging the classic belief that the STA-MCA bypass is a low-flow construct.


1991 ◽  
Vol 70 (6) ◽  
pp. 2514-2521 ◽  
Author(s):  
A. Kaise ◽  
A. N. Freed ◽  
W. Mitzner

In the present study, we investigated the interaction between CO2 concentration and rate of delivered flow on peripheral airway resistance (Rp) in the intact canine lung. Dogs were anesthetized, intubated, paralyzed, and mechanically ventilated with room air to maintain end-tidal CO2 between 4.8 and 5.2%. Using a wedged bronchoscope technique, we measured Rp at functional residual capacity. The relationship between CO2 concentration and Rp was measured at flow rates of 100 and 400 ml/min with 5, 3, 2, 1, and 0% CO2 in air. Measurements were made at the end of a 3-min exposure to each gas. At low flow rates (100 ml/min) responses to hypocapnia were small, whereas at high flow rates (400 ml/min) responses were large. The PC50 (defined as the CO2 concentration required to produce a 50% increase in Rp above baseline Rp established on 5% CO2) at 400 ml/min (1.73%) was significantly larger than that at 100 ml/min (0.38%). We also directly measured the relationship between Rp and flow rate with 5% CO2 (normocapnia) or 1% CO2 (hypocapnia) delivered into the wedged segment. Increases in normocapnic flow caused small but significant decreases in Rp. In contrast, increases in hypocapnic flow from 100 to 400 ml/min caused a 108% increase in Rp. Thus the response to hypocapnia is augmented by increasing flow rate. This interaction can be explained by a simple model that considers the effect of local ventilation-perfusion ratio and gas mixing on the local CO2 concentration at the site of peripheral airway contraction.


1991 ◽  
Author(s):  
Ronald D. Flack ◽  
Steven M. Miner ◽  
Ronald J. Beaudoin

Turbulence profiles were measured in a centrifugal pump with an impeller with backswept blades using a two directional laser velocimeter. Data presented includes radial, tangential, and cross product Reynolds stresses. Blade to blade profiles were measured at four circumferential positions and four radii within and one radius outside the four bladed impeller. The pump was tested in two configurations; with the impeller running centered within the volute, and with the impeller orbiting with a synchronous motion (ε/r2 = 0.016). Flow rates ranged from 40% to 106% of the design flow rate. Variation in profiles among the individual passages in the orbiting impeller were found. For several regions the turbulence was isotropic so that the cross product Reynolds stress was low. At low flow rates the highest cross product Reynolds stress was near the exit. At near design conditions the lowest cross product stress was near the exit, where uniform flow was also observed. Also, near the exit of the impeller the highest turbulence levels were seen near the tongue. For the design flow rate, inlet turbulence intensities were typically 9% and exit turbulence intensities were 6%. For 40% flow capacity the values increased to 18% and 19%, respectively. Large local turbulence intensities correlated with separated regions. The synchronous orbit did not increase the random turbulence, but did affect the turbulence in the individual channels in a systematic pattern.


2006 ◽  
Author(s):  
Saad A. Ahemd ◽  
Hayder Salem

Flow instabilities in a compression system at low flow rates set the flow limit of the stable operating range. Experiments to investigate the feasibility of controlling the stall in the radial diffuser of a low speed centrifugal compressor were carried out. The technique was very simple and involved using rough surfaces (i.e., sand papers) attached to the diffuser shroud. The results showed that the flow instability in the diffuser (stall) was delayed to a lower flow coefficient (the mass flow rate could be reduced to 70% of its value with the smooth surface) when the rough surfaces were positioned on the diffuser shroud.


2019 ◽  
Vol 21 (27) ◽  
pp. 14605-14611 ◽  
Author(s):  
R. Moosavi ◽  
A. Kumar ◽  
A. De Wit ◽  
M. Schröter

At low flow rates, the precipitate forming at the miscible interface between two reactive solutions guides the evolution of the flow field.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Alojz Ihan ◽  
Stefan Grosek ◽  
David Stubljar

Background. The aim of our study was to evaluate the damaging impact of characteristics of the central venous catheters (CVCs) on red blood cells. Methods. CVCs from three different manufacturers were analyzed, including the presence of coating, tunnel geometry, length, lumen diameter, and number of lumens with two respective flow rates (33 mL/min and 500 mL/min). Blood cell damage was defined by analyzing microparticle (MP) and hematologic analysis. MPs were isolated by ultracentrifugation of erythrocyte concentrate and analyzed on a flow cytometer. Results. Characteristics of catheters were not associated with blood cell damage at a low flow rate but showed an effect with a high flow rate. CVCs with a polyhexanide methacrylate coating have caused statistically less blood cell damage than noncoated CVCs. The length of lumens, diameter, and geometry of the tunnel showed no differences in blood cell damage. Meanwhile, the number of lumens was predicted to have a greater effect on the erythrocyte damage, which was revealed with the formation of MPs and hematological parameters. CVCs with five lumens caused significantly less damage to the blood cells than CVCs with a single lumen. Moreover, a high flow rate of 500 mL/min caused less damage to the blood cells than a low rate of 33 mL/min. Conclusion. Properties of CVCs are an important factor for quality patient care, especially when transfusing blood with high flow rates, as we want to provide a patient with high-quality blood with as few damaged cells as possible.


1992 ◽  
Vol 114 (2) ◽  
pp. 350-358 ◽  
Author(s):  
R. D. Flack ◽  
S. M. Miner ◽  
R. J. Beaudoin

Turbulence profiles were measured in a centrifugal pump with an impeller with backswept blades using a two-directional laser velocimeter. Data presented include radial, tangential, and cross product Reynolds stresses. Blade-to-blade profiles were measured at four circumferential positions and four radii within and one radius outside the four-bladed impeller. The pump was tested in two configurations: with the impeller running centered within the volute, and with the impeller orbiting with a synchronous motion (ε/r2 = 0.016). Flow rates ranged from 40 to 106 percent of the design flow rate. Variation in profiles among the individual passages in the oribiting impeller were found. For several regions the turbulence was isotropic so that the cross product Reynolds stress was low. At low flow rates the highest cross product Reynolds stress was near the exit. At near-design conditions the lowest cross product stress was near the exit, where uniform flow was also observed. Also, near the exit of the impeller the highest turbulence levels were seen near the tongue. For the design flow rate, inlet turbulence intensities were typically 9 percent and exit turbulence intensities were 6 percent. For 40 percent flow capacity the values increased to 18 and 19 percent, respectively. Large local turbulence intensities correlated with separated regions. The synchronous orbit did not increase the random turbulence, but did affect the turbulence in the individual channels in a systematic pattern.


Sign in / Sign up

Export Citation Format

Share Document