Suppression of Self-Excited Flow Instability in a Radial Diffuser Using Rough Surfaces

2006 ◽  
Author(s):  
Saad A. Ahemd ◽  
Hayder Salem

Flow instabilities in a compression system at low flow rates set the flow limit of the stable operating range. Experiments to investigate the feasibility of controlling the stall in the radial diffuser of a low speed centrifugal compressor were carried out. The technique was very simple and involved using rough surfaces (i.e., sand papers) attached to the diffuser shroud. The results showed that the flow instability in the diffuser (stall) was delayed to a lower flow coefficient (the mass flow rate could be reduced to 70% of its value with the smooth surface) when the rough surfaces were positioned on the diffuser shroud.

2008 ◽  
Author(s):  
Saad A. Ahmed

The operation of centrifugal compressor systems is limited at low-mass flow rates by fluid flow instabilities leading to rotating stall or surge. These instabilities limit the flow range in which the compressor can operate. They also lower the performance and efficiency of the compressor. Experiments were conducted to investigate a model of radial vaneless diffuser at stall as well as stall-free operating conditions. The speed of the impeller was kept constant at 2000 RPM, while the mass flow rate was reduced gradually to scan the steady and unsteady operating conditions of the compressor. The flow rate through the compressor was gradually decreased until flow instability is initiated at the diffuser. The flow rate was further reduced to study the characteristics of rotating stall. These measurements were reported for diffuser diameter ratios, Do/Di, of 2.0 with diffuser width ratio, b/Di, of 0.055. At lower flow rates than the critical, the rotating stall pattern with one stall cell was dominant over the pattern with two cells. In addition, the instability in the diffuser was successfully delayed to a lower flow coefficient when rough surfaces were attached to one or both sides of the diffuser with the lowest values achieved by attaching the rough surface to the shroud. Results show that the roughness has no significant effect on stall cell characteristics.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Yanxia Fu ◽  
Jianping Yuan ◽  
Shouqi Yuan ◽  
Giovanni Pace ◽  
Luca d'Agostino ◽  
...  

The characteristics of flow instabilities as well as the cavitation phenomenon in a centrifugal pump operating at low flow rates were studied by experimental and numerical means, respectively. Specially, a three-dimensional (3D) numerical model of cavitation was applied to simulate the internal flow through the pump and suitably long portions of the inlet and outlet ducts. As expected, cavitation proved to occur over a wide range of low flow rates, producing a characteristic creeping shape of the head-drop curve and developing in the form of nonaxisymmetric cavities. As expected, the occurrence of these cavities, attached to the blade suction sides, was found to depend on the pump's flow coefficient and cavitation number. The experiments focused on the flow visualization of the internal flow patterns by means of high-speed digital movies and in the analysis of the inlet pressure pulsations near the impeller eye by means of fast response pressure transducers. The experimental results showed that the unsteady behavior of the internal flow in the centrifugal pump operating at low flow rates has the characteristics of a peculiar low-frequency oscillation. Meanwhile, under certain conditions, the low-frequency pressure fluctuations were closely correlated to the flow instabilities induced by the occurrence of cavitation phenomena at low flow rates. Finally, the hydraulic performances of the centrifugal pump predicted by numerical simulations were in good agreement with the corresponding experimental data.


Author(s):  
Hideaki Tamaki ◽  
Tomoki Kawakubo ◽  
Masaru Unno ◽  
Shinji Abe ◽  
Kanji Majima

This study reports on the process of performance improvement in a six-stage compressor which encountered rotor vibration near its design flow rate during a factory acceptance test. This multistage compressor comprised three blocks, each of which also included a two-stage compressor. Flow instability in the 2nd or 3rd block, i.e. any of the 3rd to 6th stages, was suspected as the cause of the rotor vibration. This paper shows the process used to determine a modification plan to enhance the stable operating range; based on data obtained by a factory acceptance test. The performance of each block was measured in that test, but not that of each stage. Improving the compressor performance therefore requires a new database, which represents the stage characteristics as operated during the factory acceptance test. A new database was thus constructed using a 1-D performance prediction method, the loss models of which were tuned to reproduce each block performance obtained by the factory acceptance test. Subsequently, stage-stacking calculations were conducted based on this database and modification plans devised, while single-stage tests for the 3rd and 6th stages were also conducted in a test stand to make a final decision on modification. This paper reports on both these results and data-reduction procedures.


ORL ◽  
2021 ◽  
pp. 1-5
Author(s):  
Jingjing Liu ◽  
Tengfang Chen ◽  
Zhenggang Lv ◽  
Dezhong Wu

<b><i>Introduction:</i></b> In China, nasal cannula oxygen therapy is typically humidified. However, it is difficult to decide whether to suspend nasal cannula oxygen inhalation after the nosebleed has temporarily stopped. Therefore, we conducted a preliminary investigation on whether the use of humidified nasal cannulas in our hospital increases the incidence of epistaxis. <b><i>Methods:</i></b> We conducted a survey of 176,058 inpatients in our hospital and other city branches of our hospital over the past 3 years and obtained information concerning their use of humidified nasal cannulas for oxygen inhalation, nonhumidified nasal cannulas, anticoagulant and antiplatelet drugs, and oxygen inhalation flow rates. This information was compared with the data collected at consultation for epistaxis during these 3 years. <b><i>Results:</i></b> No significant difference was found between inpatients with humidified nasal cannulas and those without nasal cannula oxygen therapy in the incidence of consultations due to epistaxis (χ<sup>2</sup> = 1.007, <i>p</i> &#x3e; 0.05). The same trend was observed among hospitalized patients using anticoagulant and antiplatelet drugs (χ<sup>2</sup> = 2.082, <i>p</i> &#x3e; 0.05). Among the patients with an inhaled oxygen flow rate ≥5 L/min, the incidence of ear-nose-throat (ENT) consultations due to epistaxis was 0. No statistically significant difference was found between inpatients with a humidified oxygen inhalation flow rate &#x3c;5 L/min and those without nasal cannula oxygen therapy in the incidence of ENT consultations due to epistaxis (χ<sup>2</sup> = 0.838, <i>p</i> &#x3e; 0.05). A statistically significant difference was observed in the incidence of ENT consultations due to epistaxis between the low-flow nonhumidified nasal cannula and nonnasal cannula oxygen inhalation groups (χ<sup>2</sup> = 18.428, <i>p</i> &#x3c; 0.001). The same trend was observed between the 2 groups of low-flow humidified and low-flow nonhumidified nasal cannula oxygen inhalation (χ<sup>2</sup> = 26.194, <i>p</i> &#x3c; 0.001). <b><i>Discussion/Conclusion:</i></b> Neither high-flow humidified nasal cannula oxygen inhalation nor low-flow humidified nasal cannula oxygen inhalation will increase the incidence of recurrent or serious epistaxis complications; the same trend was observed for patients who use anticoagulant and antiplatelet drugs. Humidification during low-flow nasal cannula oxygen inhalation can prevent severe and repeated epistaxis to a certain extent.


2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


Author(s):  
Sasuga Ito ◽  
Masato Furukawa ◽  
Satoshi Gunjishima ◽  
Takafumi Ota ◽  
Kazuhito Konishi ◽  
...  

Abstract Inlet distortion has influence on the aerodynamic performance of turbomachinery such as compressors, turbines and fans. On turbochargers, bent pipes are installed around the compressor due to the spatial limitations in the engine room of the vehicle. As the result, the compressor is operated with the distorted inflow. In the low flow rate operation, the distorted inflow also affects the flow instability like stall and surge. Especially, the operation range on the low flow rate side is defined based on the flow rate where surge occurs, so it is important to investigate the effect of the distorted inflow on surge. In this study, the effect of the inlet distortion to surge phenomena has been investigated by the experiments with a transonic centrifugal compressor. A bent pipe has been installed at the upstream of the compressor to generate a distorted flow. Experiments have been also conducted under the condition that a straight pipe was installed upstream of the compressor, and unsteady measurements with high response pressure sensors and an I-type hot wire probe have been carried out to each experiments. In addition, Fast Fourier transform (FFT) and Wavelet transform have been applied to the unsteady measurement results obtained from each experiment.


Author(s):  
Daniel O. Baun ◽  
Ronald D. Flack

Lateral centrifugal impeller forces are calculated using the CFD model developed in Part I of this paper. The impeller forces are evaluated by integrating the pressure and momentum profiles at both the impeller inlet and exit planes. Direct impeller lateral force measurements were made using a magnetic bearing supported pump rotor. Comparisons between the simulated and measured forces are first made for both average and transient impeller forces with water as the working fluid. Air was then substituted as the working fluid in the validated CFD model and the effect of impeller Mach number and Reynolds number on the static impeller lateral forces was investigated. The non-dimensional lateral impeller force characteristics as a function of normalized flow coefficient are similar in character between the incompressible and compressible case. At the matching point flow coefficient the non-dimensional impeller force magnitude was the same for all compressible and incompressible simulations. For any normalized flow rate other than the matching point flow rate, the magnitude of the non-dimensional impeller force increased as the Mach number increased. As the choke condition was approached the magnitude of the impeller force increased exponentially. As the Mach number increased the transition of the force orientation vector from the low flow asymptote to the high flow asymptote occurred over a progressively smaller range of flows.


Author(s):  
Can Kang ◽  
Ning Mao ◽  
Chen Pan ◽  
Yang Zhu ◽  
Bing Li

A low-specific-speed centrifugal pump equipped with long and short blades is studied. Emphasis is placed on the pump performance and inner flow characteristics at low flow rates. Each short blade is intentionally shifted towards the back surface of the neighboring long blade, and the outlet parts of the short blades are uniformly shortened. Unsteady numerical simulation is conducted to disclose inner flow patterns associated with the modified design. Thereby, a comparison is enabled between the two schemes featured by different short blades. Both practical operation data and numerical results support that the deviation and cutting of the short blades can eliminate the positive slope of pump head curve at low flow rates. Therefore, the modification of short blades improves the pump operation stability. Due to the shortening of the outlet parts of the short blades, velocity distributions between impeller outlet and radial diffuser inlet exhibit explicitly altered circumferential flow periodicity. Pressure fluctuations in the radial diffuser are complex in terms of diversified periodicity and amplitudes. Flow rate influences pressure fluctuations in the radial diffuser considerably. As flow rate decreases, the regularity of the orbit of hydraulic loads exerted upon the impeller collapses while hydraulic loads exerted upon the short blades remain circumferentially periodic.


2018 ◽  
Vol 15 (6) ◽  
pp. E94-E99 ◽  
Author(s):  
Ralph Rahme ◽  
Tejaswi D Sudhakar ◽  
Marjan Alimi ◽  
Timothy G White ◽  
Rafael A Ortiz ◽  
...  

Abstract BACKGROUND AND IMPORTANCE Cerebral hyperperfusion syndrome (CHS) is a well-known complication of superficial temporal artery (STA) to middle cerebral artery (MCA) bypass for ischemic cerebrovascular disease. While this argues against “low flow” in the bypass construct, flow rates in the graft have not been previously quantified in the setting of CHS. CLINICAL PRESENTATION A 58-yr-old man presented with recurrent left hemispheric ischemic strokes and fluctuating right hemiparesis and aphasia. Vascular imaging revealed left cervical internal carotid artery occlusion and perfusion imaging confirmed left hemispheric hypoperfusion. After failing to respond to maximal medical therapy, the patient underwent single-barrel STA-MCA bypass. Postoperatively, his symptoms resolved and blood pressure (BP) was strictly controlled within normal range. However, 2 d later, he developed severe expressive aphasia. CTA demonstrated a patent bypass graft and SPECT showed focal hyperperfusion in Broca's speech area. Seizure activity was ruled out. A high graft flow rate of 52 mL/min was documented by quantitative magnetic resonance angiography (MRA). Thus, the diagnosis of CHS was made and managed with strict BP control. The patient exhibited complete recovery of speech over a period of days and was discharged home. Repeat SPECT at 4 mo showed resolution of hyperperfusion and quantitative MRA demonstrated reduction of graft flow rate to 34 mL/min. CONCLUSION This is the first case of perfusion imaging-proven CHS after STA-MCA bypass, where high graft flow rates are objectively documented. Our observations constitute irrefutable evidence challenging the classic belief that the STA-MCA bypass is a low-flow construct.


1991 ◽  
Vol 70 (6) ◽  
pp. 2514-2521 ◽  
Author(s):  
A. Kaise ◽  
A. N. Freed ◽  
W. Mitzner

In the present study, we investigated the interaction between CO2 concentration and rate of delivered flow on peripheral airway resistance (Rp) in the intact canine lung. Dogs were anesthetized, intubated, paralyzed, and mechanically ventilated with room air to maintain end-tidal CO2 between 4.8 and 5.2%. Using a wedged bronchoscope technique, we measured Rp at functional residual capacity. The relationship between CO2 concentration and Rp was measured at flow rates of 100 and 400 ml/min with 5, 3, 2, 1, and 0% CO2 in air. Measurements were made at the end of a 3-min exposure to each gas. At low flow rates (100 ml/min) responses to hypocapnia were small, whereas at high flow rates (400 ml/min) responses were large. The PC50 (defined as the CO2 concentration required to produce a 50% increase in Rp above baseline Rp established on 5% CO2) at 400 ml/min (1.73%) was significantly larger than that at 100 ml/min (0.38%). We also directly measured the relationship between Rp and flow rate with 5% CO2 (normocapnia) or 1% CO2 (hypocapnia) delivered into the wedged segment. Increases in normocapnic flow caused small but significant decreases in Rp. In contrast, increases in hypocapnic flow from 100 to 400 ml/min caused a 108% increase in Rp. Thus the response to hypocapnia is augmented by increasing flow rate. This interaction can be explained by a simple model that considers the effect of local ventilation-perfusion ratio and gas mixing on the local CO2 concentration at the site of peripheral airway contraction.


Sign in / Sign up

Export Citation Format

Share Document