scholarly journals Textural characteristics and impurity content of meteoric and marine ice in the Ronne Ice Shelf, Antarctica

1994 ◽  
Vol 40 (135) ◽  
pp. 386-398 ◽  
Author(s):  
Hajo Eicken ◽  
Hans Oerter ◽  
Heinz Miller ◽  
Wolfgang Graf ◽  
Josef Kipfstuhl

AbstractThe texture and physical properties of an ice core, recovered to 215 m depth from the Ronne Ice Shelf, Antarctica, have been studied with regard to formation and transformation of the ice. At a depth of 152.8 m, a sharp discontinuity marks the transition between meteoric ice accumulated from above and marine ice accreted from below, as testified by electrolytical conductivity and stable-isotope measurements as well as geophysical field surveys. Automated image analysis of thin sections indicates that the decrease in grain-boundary density and the increase in grain cross-sectional area with depth is commensurate with though not necessarily caused by thermodynamically driven grain growth down to 120 m depth, corresponding to a vertical strain of roughly 65% as computed with a simple temperature-history, particle-path model. The observed increase of grain-boundary density (i.e. a decrease of grain-size) with age in the marine ice is in part explained by the thermal history of this layer. Sediment inclusions at the top of the marine-ice layer affect the observed grain-boundary density profile by inhibiting grain growth and dynamic recrystallization. This may allow some conclusions on the role of temperature, particulate inclusions, stress and strain rate in controlling the grain-size evolution of deforming ice, supplementing earlier laboratory experiments conducted at much shorter time-scales. Salinities (0.026%), brine volumes (0.09–0.2%) and solid-salt concentrations have been computed from electrolytical conductivity measurements (mean of 51.0 × 10−6S cm−1) for the marine ice. An assessment of salt incorporation and desalination rates shows that these low salinities can at present only be explained by a unique densification mechanism of under-water ice crystals at the base of the ice shelf.

1994 ◽  
Vol 40 (135) ◽  
pp. 386-398 ◽  
Author(s):  
Hajo Eicken ◽  
Hans Oerter ◽  
Heinz Miller ◽  
Wolfgang Graf ◽  
Josef Kipfstuhl

AbstractThe texture and physical properties of an ice core, recovered to 215 m depth from the Ronne Ice Shelf, Antarctica, have been studied with regard to formation and transformation of the ice. At a depth of 152.8 m, a sharp discontinuity marks the transition between meteoric ice accumulated from above and marine ice accreted from below, as testified by electrolytical conductivity and stable-isotope measurements as well as geophysical field surveys. Automated image analysis of thin sections indicates that the decrease in grain-boundary density and the increase in grain cross-sectional area with depth is commensurate with though not necessarily caused by thermodynamically driven grain growth down to 120 m depth, corresponding to a vertical strain of roughly 65% as computed with a simple temperature-history, particle-path model. The observed increase of grain-boundary density (i.e. a decrease of grain-size) with age in the marine ice is in part explained by the thermal history of this layer. Sediment inclusions at the top of the marine-ice layer affect the observed grain-boundary density profile by inhibiting grain growth and dynamic recrystallization. This may allow some conclusions on the role of temperature, particulate inclusions, stress and strain rate in controlling the grain-size evolution of deforming ice, supplementing earlier laboratory experiments conducted at much shorter time-scales. Salinities (0.026%), brine volumes (0.09–0.2%) and solid-salt concentrations have been computed from electrolytical conductivity measurements (mean of 51.0 × 10−6 S cm−1) for the marine ice. An assessment of salt incorporation and desalination rates shows that these low salinities can at present only be explained by a unique densification mechanism of under-water ice crystals at the base of the ice shelf.


1996 ◽  
Vol 42 (141) ◽  
pp. 255-260 ◽  
Author(s):  
R. B Alley ◽  
G. A. Woods

AbstractIntercept analysis of approximately bi-yearly vertical thin sections from the upper part of the GISP2 ice Core, central Greenland, shows that grain-size ranges increase with increasing age. This demonstrates that something in the ice affects grain-growth rates, and that grain-size cannot be used directly in paleothermometry as has been proposed. Correlation of grain-growth rates to chemical and isotopic data indicates slower growth in ice with higher impurity concentrations, and especially slow growth in “forest-fire” layers containing abundant ammonium; however, the impurity/grain-growth relations are quite noisy. Little correlation is found between growth rate and isotopic composition of ice.


1991 ◽  
Vol 238 ◽  
Author(s):  
A. M. El-Sherik ◽  
K. Boylan ◽  
U. Erb ◽  
G. Palumbo ◽  
K. T. Aust

ABSTRACTThe thermal stability of electrodeposited nanocrystalline Ni-1.2%P and Ni-0.12%S alloys is evaluated by in-situ electron microscopy studies. Isothermal grain size versus annealing time curves at 573K and 623K show an unexpected thermal stabilization in form of a transition from rapid initial grain growth to negligible grain growth. This behaviour is discussed in terms of the various grain boundary drag mechanisms which may be operative in these alloys.


2016 ◽  
Vol 724 ◽  
pp. 8-11
Author(s):  
Chun Yu Teng ◽  
Yun Fu ◽  
Zhan Yong Ren ◽  
Yong Hong Li ◽  
Yun Wang ◽  
...  

The properties of alloys depend on its microstructure, such as the size of grains. In general, the balanced mechanical properties of alloys can be obtained with small grain size. While the grain size of alloys may increases under heat treatment, thermal mechanical processing and service condition of high temperature, i.e., the grain growth is inevitable. The effort of most research is to control the rate of grain growth and avoid abnormal grain growth. For example, pinning the grain boundary and reduce its mobility with the second phase particles in order to prevent grain growth. Therefore, the properties of the alloys will not decreases dramatically and the structure retains a high degree of integrity. The details of grain growth with particle pinning were investigated by phase field simulations in the present paper. It is found that, with the same size of pinning particles, the pinning effect increases with the increases of the pinning particle number. With the same pinning particle number, the pinning effect increases with the increases of pinning particle size. Under the same total volume of pinning particles while different particle size and number, the pinning effect is complicated and it will be discussed in details. The pinning effect decreases with the increases of grain boundary energy. These findings could shed light on the understanding of the grain growth kinetics with particle pinning.


2019 ◽  
Vol 58 (1) ◽  
pp. 98-106
Author(s):  
Haitao Ni ◽  
Jiang Zhu ◽  
Zhaodong Wang ◽  
Haiyang Lv ◽  
Yongyao Su ◽  
...  

Abstract This review focuses on grain growth behaviors and the underlying mechanisms of bulk electrodeposited nanocrystalline nickel and nickel-iron alloys. Effects of some important factors on grain growth are described. During thermal-induced grain growth process, grain boundary migration plays a key role. For similar thermal conditions, due to grain boundary mobility with solute drag, limited grain growth occurs in nanocrystalline alloys, as compared to pure metals. Nonetheless, in the case of stress-induced grain growth process, there are a variety of mechanisms in samples having various deformation histories. As an example the grain growth of nanocrystalline nickel and Ni-20%Fe alloy with nearly the same grain-size distribution and average grain size is compared in this paper. Thermal analysis indicates nanocrystalline nickel is much more prone to rapid grain growth than nanocrystalline Ni-20%Fe alloy. Nevertheless, grain growth of nanocrystalline Ni-20%Fe is found to be more pronounced than nanocrystalline nickel during rolling deformation.


2020 ◽  
Vol 993 ◽  
pp. 953-958
Author(s):  
Yan Wu ◽  
Ren Chuang Yan ◽  
Er Wei Qin ◽  
Wei Dong Chen

In this paper, the effect of grain boundary energy in AZ31 Mg alloy with multi-order parameters phenomenological phase field model has been discussed during the progress of recrystallization. The average grain size of the recrystallization grain at a certain temperature and a certain restored energy but various grain boundary energies have been studied, and the simulated results show that the larger the grain boundary energy is, the larger the average grain size will be, and the speed of grain growth will increase with the increase of grain boundary energy. Additionally, temperature will also increase the grain growth rate.


A theoretical model of the energy changes accompanying grain boundary movement has been developed. It has been shown that small boundary movements will reduce the energy of a polycrystalline metal only when there is a heterogeneous grain size. The pinning force exerted by precipitate particles of a second phase on the grain boundary has also been considered. The release of grain boundary energy which accompanies grain growth has been considered as a source of energy for the unpinning process. The theory predicts a critical particle size which is dependent on the volume fraction of second phase, the matrix grain size, and the degree of heterogeneity of the matrix. Coalescence of the precipitate to a size in excess of the critical radius will permit grain growth to occur. Theoretical predictions of the critical particle size are in good agreement with values determined experimentally. The essential difference between grain growth and secondary recrystallization is indicated by the theory.


2004 ◽  
Vol 819 ◽  
Author(s):  
Katayun Barmak ◽  
Wayne E. Archibald ◽  
Anthony D. Rollett ◽  
Shlomo Ta'asan ◽  
David Kinderlehrer

AbstractRelative grain boundary energy as a function of misorientation angle has been measured in cube-oriented, i.e., <100> fiber-textured, 120 [.proportional]m-thick Al foil using orientation imaging microscopy and a statistical multiscale method. The energies of low-angle boundaries increase with misorientation angle, in good agreement with the Read-Shockley model. The relative energies of high-angle boundaries exhibit little variation with misorientation. Examination of the grain structure of <111> fiber-textured, 100 nm-thick Al films annealed at 400°C for 0.5-10 h shows 5 and 6 sided grains to be the most frequent, and the fraction of four-sided grains to be significant. The mean number of sides is slightly lower than the expected value of 6 for two- dimensional structures. Of lognormal, gamma and Rayleigh distributions, gamma gives the best fit to the grain size data in the films; however, the difference between gamma and lognormal is small. Grain growth is not self-similar and stagnates after one hour of annealing. The evolution of the grain size distribution with time indicates that the growth stagnation in the films is neither consistent with boundary pinning by grooving nor with conventional treatments of solute drag. Surface, elastic-strain and plastic-strain energy driving forces do not play a significant role in the grain growth and the subsequent stagnation since the films are strongly textured even in the as- deposited state. The steady-state distributions of reduced grain area for two-dimensional, Monte Carlo and partial differential equation based simulations show excellent agreement with each other, even when anisotropic boundary energies are used. However, comparison with experimental distributions reveals a significantly higher population of small grains in the experiments.


2004 ◽  
Vol 449-452 ◽  
pp. 265-268 ◽  
Author(s):  
Tetsuhiko Onda ◽  
H. Yamauchi ◽  
Motozo Hayakawa

The effect of CoO addition into Y-TZP (Yttria doped Tetragonal Zirconia Polycrystals) was studied on the evolution of its sintering ability, grain size, grain boundary structure and mechanical properties. The doping of a small amount of CoO effectively reduced the sintering temperature. A small amount of CoO up to ~ 0.3 mol% was effective for the suppression of grain growth, but the addition of 1.0 mole % resulted in an enhanced grain growth. The hardness and toughness of the CoO doped TZP were about the same as those of undoped TZP. Furthermore, despite the grain refinement, CoO doped TZP did not exhibit improved mechanical properties. This may be suggesting that CoO dopant had weakened the grain boundary strength.


Author(s):  
Fabian Hanning ◽  
Gurdit Singh ◽  
Joel Andersson

The effect of grain size on the suceptibility towards strain age cracking (SAC) has been investigated for Haynes® 282® in the tempeature range of 750 to 950∘C after isothermal exposure up to 1800s. Grain growth was induced by heat treating the material at 1150∘C for 2h, resulting in a fourfold increase in grain size. Hardness was significanlty reduced after heat treatment as compared to mill-annealed material. Large grain size resulted in intergranular fracture over a wider temperature range than small grain size material. Ductility was lowest at 850∘C, while lower values were observed to be correlated to increased grain size. The rapid formation of grain boundary carbide networks in Haynes® 282® is found to be not able to compensate for higher local stresses on grain boundaries due to incresed grain size.


Sign in / Sign up

Export Citation Format

Share Document