scholarly journals Inelastic Behaviour of Ice Ih Single Crystals in the Low-Frequency Range Due to Dislocations

1978 ◽  
Vol 21 (85) ◽  
pp. 375-384 ◽  
Author(s):  
René Vassoille ◽  
Christian Maï ◽  
Joseph Perez

Abstract The inelastic behaviour of ice Ih single crystals has been investigated by an inverted torsional pendulum in the low-frequency range. Three features are distinguished: (i) a relaxation peak previously observed by several authors in the higher-frequency range, (ii) an internal friction increasing with temperature in the high-temperature range (230–273 K), (iii) within this high-temperature range, internal friction becomes amplitude dependent, and this dependence becomes greater the greater the temperature. In this case, the internal friction has been interpreted in terms of movements of dislocations. Hence, the experimental results are interpreted with a model of internal friction based on an empirical relation for the velocity of dislocations. This model of internal friction is in fair agreement with experimental data . It is possible then to get an estimate of dislocation density. Hence it is shown that internal friction experiments can be useful in the study of the plastic behaviour of ice single crystals.

1978 ◽  
Vol 21 (85) ◽  
pp. 375-384
Author(s):  
René Vassoille ◽  
Christian Maï ◽  
Joseph Perez

AbstractThe inelastic behaviour of ice Ih single crystals has been investigated by an inverted torsional pendulum in the low-frequency range. Three features are distinguished:(i) a relaxation peak previously observed by several authors in the higher-frequency range,(ii) an internal friction increasing with temperature in the high-temperature range (230–273 K),(iii) within this high-temperature range, internal friction becomes amplitude dependent, and this dependence becomes greater the greater the temperature.In this case, the internal friction has been interpreted in terms of movements of dislocations. Hence, the experimental results are interpreted with a model of internal friction based on an empirical relation for the velocity of dislocations. This model of internal friction is in fair agreement with experimental data . It is possible then to get an estimate of dislocation density. Hence it is shown that internal friction experiments can be useful in the study of the plastic behaviour of ice single crystals.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


Author(s):  
H. B. Gasimov ◽  
R. M. Rzayev

Cu2Te single crystal was grown by the Bridgman method. X-ray diffraction (XRD) study of Cu2Te single crystals in the temperature range of 293–893 K was performed and possible phase transitions in the mentioned range of temperature have been investigated. (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals also were grown with [Formula: see text], 0.05, 0.10 concentrations and structural properties of the obtained single crystals were investigated by the XRD method in the temperature range 293–893 K. Lattice parameters and possible phase transitions in the mention temperature range were determined for (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals for [Formula: see text], 0.05, 0.10 concentrations.


1965 ◽  
Vol 8 (10) ◽  
pp. 963-965
Author(s):  
L. M. Golub ◽  
V. E. Finkel'shtein ◽  
E. S. Shpigel'man

2012 ◽  
Vol 535-537 ◽  
pp. 1027-1030
Author(s):  
Xiao Hui Cao ◽  
Yu Wang

By using a low frequency inverted torsion pendulum, the high temperature internal friction spectra of Al-0.02wt%Zr and Al-0.1wt%Zr alloys were investigated respectively. In Al-0.02wt%Zr alloy, the conventional grain boundary internal friction peak (Pg) is observed with some small unstable peaks. In Al-0.1wt%Zr alloy, the bamboo peak is observed to appear at the high temperature side of the conventional grain boundary internal friction peak. The conventional grain boundary internal friction peak decreased and moved to higher temperature. The bamboo peak owns an activation energy of 1.75eV. When average grain size exceeded the diameter of samples, Pb strength was reduced and its position was shifted to a lower temperature. Based on the grain boundary sliding model, Pg and Pb peaks were explained. Their dependence on annealing temperature and time was determined by considering the effects of contained Ce atoms and other impurities on the relaxation across grain boundary.


2015 ◽  
Vol 363 ◽  
pp. 106-111
Author(s):  
Shigeru Suzuki ◽  
Alfred Seeger

Dislocation-induced relaxations in different molybdenum single crystals were investigated by means of low-frequency internal friction measurements in the temperature range of 20–600 K. The results indicated that the appearance of the dislocation-induced relaxations strongly depends on the purity of the molybdenum, although the intrinsic dislocation relaxations appeared at about 100 K and 450 K in the high-purity molybdenum. The molybdenum containing a small amount of carbon did not exhibit the intrinsic dislocation relaxations but rather revealed a modulus increase due to the dislocation pinning caused by the dissolved carbon. When the molybdenum containing a small amount of carbon was annealed up to 700 K, a new relaxation peak appeared at about 450 K. The activation process for this relaxation indicated that it could be attributed to the relaxation due to a carbon-dislocation interaction. In addition, it was shown that the dislocation-induced relaxations in medium-purity molybdenum were small, which was attributed to the residual substitutional impurities in the molybdenum.


1962 ◽  
Vol 10 (4) ◽  
pp. 430-441 ◽  
Author(s):  
J.M Roberts ◽  
N Brown

Author(s):  
Bilal Dogan ◽  
Robert Ainsworth

There are many similarities between available procedures used for defect assessment. They have been developed as a result of experience gained from material-specific programs and have often been verified using the same data. One recently updated document covering life assessment procedures under creep and creep/fatigue crack growth conditions is BS 7910. This document takes into account some of the most recent developments in the subject, including some from the British Energy R5 Procedure. Future developments in defect assessment procedures will follow the route of simplified and unified codes covering defect behaviour in the low to high temperature range. In this paper, the relevance of the insignificant creep curves in RCC-MR for defect free structures and the creep exemption criteria in BS7910 are examined. Then, an overview is given of some European developments in defect assessment methods for Fitness-for-Service assessment, based on recent and current projects such as the EC thematic network FITNET.


Sign in / Sign up

Export Citation Format

Share Document