scholarly journals Observations on photodynamic inactivation of vaccinia virus and its effect on immunogenicity

1965 ◽  
Vol 63 (3) ◽  
pp. 395-410 ◽  
Author(s):  
G. S. Turner ◽  
C. Kaplan

Photoinactivation of vaccinia virus sensitized by methylene blue had parameters similar to those observed with other viruses. Thus inactivation proceeded exponentially to completion, was irreversible, independent of temperature and the intensity of illumination. Inactivation was dependent on the dose of illumination and the concentrations of both methylene blue and hydrogen ions. The effects of pH appeared to be primarily concerned with the tenacity of dye-virus binding. Inactivation was inhibited by small amounts of nucleic acid but not by their bases or pentoses. Inactivation was only affected by the presence of extraneous protein in relatively high concentration: it was not affected by the enzymes catalase or peroxidase. Attempts to obtain direct chemical evidence of the participation of viral nucleic acid in photoinactivation were unsuccessful.Recombination experiments strongly indicated the involvement of viral protein in photoinactivation. Immunogenicity was not impaired since good responses of neutralizing antibody were obtained in rabbits immunized with vaccines photoinactivated over a wide range of exposure times.

1956 ◽  
Vol 39 (3) ◽  
pp. 437-471 ◽  
Author(s):  
Richard S. Welsh

1. Aqueous solutions of tobacco mosaic virus were found to undergo a number of spontaneous changes on standing in the cold. The results of pH measurements, acid and base titrations, intrinsic viscosity determinations, studies on the irreversible binding of methylene blue with the virus, ultraviolet absorption, and the extent of nucleic acid splitting by heat denaturation indicated the occurrence of two successive reactions, the first one causing the release of hydrogen ions and a greater lability of the nucleic acid, and the second one, which involved end-to-end dimerization and which took place after 8 days of standing, requiring hydrogen ions. 2. The first over-all reaction was found to be a mixture of various types of reversible disaggregation and aggregation reactions, the nature of which depended on the pretreatment, the TMV concentration, the time of standing, and the phosphate concentration. For longer times of standing at high protein concentration a sudden drop in ultraviolet absorption is noted after dilution; also the drops in viscosity and pH are largest with a steep rise following, indicating the greatest breakup of end-to-end aggregates with formation of the side-to-side type. For concentrated solutions of TMV in water which have not stood long no drop in ultraviolet absorption is noted on dilution; the decrease in the other quantities is less, indicating that only a less extensive breakdown of end-to-end aggregates occurs. Addition of phosphate to concentrated solutions of TMV causes formation of side-to-side aggregates which break up on dilution. 3. Using the results for the pH increase and the viscosity increase in a given time interval for a given TMV preparation and also the slope of the corresponding titration curve at the pH mean, a value for the number of hydrogen ions taken up per TMV monomer in the formation of the end-to-end dimer was finally calculated. The average result obtained for two preparations was 3300. 4. Methylene blue, in the polymeric form, was demonstrated to cause complete irreversible conversion of TMV monomers to end-to-end dimers. At dye concentrations above 10–4 M, higher TMV polymers are formed, but these are broken down to dimers on removal of free dye by dialysis. The irreversible binding ratios were shown to be decreased in accordance with the extent of the end-to-end aggregation of the preparation at the time of the experiment, which is in agreement with the concept that the irreversibly bound dye polymers go into the junction formed between two interacting TMV monomers. On the basis that only the monomers initially present in solution can react, maximum binding ratios corresponding to complete conversion of monomers to dimers were calculated from the observed irreversible binding ratios and from the fraction of dimers initially present which was obtained from viscosity data. The average result for three preparations in different states of aggregation was calculated to be 6565 for tetrameric binding or 3230 for dimeric binding, which agrees closely with the result obtained for the uptake of hydrogen ions per TMV monomer in the spontaneous dimerization.


1984 ◽  
Vol 19 (1) ◽  
pp. 87-100
Author(s):  
D. Prasad ◽  
J.G. Henry ◽  
P. Elefsiniotis

Abstract Laboratory studies were conducted to demonstrate the effectiveness of diffused aeration for the removal of ammonia from the effluent of an anaerobic filter treating leachate. The effects of pH, temperature and air flow on the process were studied. The coefficient of desorption of ammonia, KD for the anaerobic filter effluent (TKN 75 mg/L with NH3-N 88%) was determined at pH values of 9, 10 and 11, temperatures of 10, 15, 20, 30 and 35°C, and air flow rates of 50, 120, and 190 cm3/sec/L. Results indicated that nitrogen removal from the effluent of anaerobic filters by ammonia desorption was feasible. Removals exceeding 90% were obtained with 8 hours aeration at pH of 10, a temperature of 20°C, and an air flow rate of 190 cm3/sec/L. Ammonia desorption coefficients, KD, determined at other temperatures and air flow rates can be used to predict ammonia removals under a wide range of operating conditions.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Federica Palombarini ◽  
Silvia Masciarelli ◽  
Alessio Incocciati ◽  
Francesca Liccardo ◽  
Elisa Di Fabio ◽  
...  

Abstract Background In recent years, the use of ferritins as nano-vehicles for drug delivery is taking center stage. Compared to other similar nanocarriers, Archaeoglobus fulgidus ferritin is particularly interesting due to its unique ability to assemble-disassemble under very mild conditions. Recently this ferritin was engineered to get a chimeric protein targeted to human CD71 receptor, typically overexpressed in cancer cells. Results Archaeoglobus fulgidus chimeric ferritin was used to generate a self-assembling hybrid nanoparticle hosting an aminic dendrimer together with a small nucleic acid. The positively charged dendrimer can indeed establish electrostatic interactions with the chimeric ferritin internal surface, allowing the formation of a protein-dendrimer binary system. The 4 large triangular openings on the ferritin shell represent a gate for negatively charged small RNAs, which access the internal cavity attracted by the dense positive charge of the dendrimer. This ternary protein-dendrimer-RNA system is efficiently uptaken by acute myeloid leukemia cells, typically difficult to transfect. As a proof of concept, we used a microRNA whose cellular delivery and induced phenotypic effects can be easily detected. In this article we have demonstrated that this hybrid nanoparticle successfully delivers a pre-miRNA to leukemia cells. Once delivered, the nucleic acid is released into the cytosol and processed to mature miRNA, thus eliciting phenotypic effects and morphological changes similar to the initial stages of granulocyte differentiation. Conclusion The results here presented pave the way for the design of a new family of protein-based transfecting agents that can specifically target a wide range of diseased cells. Graphic abstract


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Umair Khan ◽  
Gul Hassan ◽  
Rayyan Ali Shaukat ◽  
Qazi Muhammad Saqib ◽  
Mahesh Y. Chougale ◽  
...  

AbstractThis paper proposes a signal processed systematic 3 × 3 humidity sensor array with all range and highly linear humidity response based on different particles size composite inks and different interspaces of interdigital electrodes (IDEs). The fabricated sensors are patterned through a commercial inkjet printer and the composite of Methylene Blue and Graphene with three different particle sizes of bulk Graphene Flakes (BGF), Graphene Flakes (GF), and Graphene Quantum Dots (GQD), which are employed as an active layer using spin coating technique on three types of IDEs with different interspaces of 300, 200, and 100 µm. All range linear function (0–100% RH) is achieved by applying the linear combination method of nine sensors in the signal processing field, where weights for linear combination are required, which are estimated by the least square solution. The humidity sensing array shows a fast response time (Tres) of 0.2 s and recovery time (Trec) of 0.4 s. From the results, the proposed humidity sensor array opens a new gateway for a wide range of humidity sensing applications with a linear function.


2006 ◽  
Vol 52 (10) ◽  
pp. 1855-1863 ◽  
Author(s):  
Giulia Amicarelli ◽  
Daniel Adlerstein ◽  
Erlet Shehi ◽  
Fengfei Wang ◽  
G Mike Makrigiorgos

Abstract Background: Genotyping methods that reveal single-nucleotide differences are useful for a wide range of applications. We used digestion of 3-way DNA junctions in a novel technology, OneCutEventAmplificatioN (OCEAN) that allows sequence-specific signal generation and amplification. We combined OCEAN with peptide-nucleic-acid (PNA)-based variant enrichment to detect and simultaneously genotype v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) codon 12 sequence variants in human tissue specimens. Materials and Methods: We analyzed KRAS codon 12 sequence variants in 106 lung cancer surgical specimens. We conducted a PNA-PCR reaction that suppresses wild-type KRAS amplification and genotyped the product with a set of OCEAN reactions carried out in fluorescence microplate format. The isothermal OCEAN assay enabled a 3-way DNA junction to form between the specific target nucleic acid, a fluorescently labeled “amplifier”, and an “anchor”. The amplifier-anchor contact contains the recognition site for a restriction enzyme. Digestion produces a cleaved amplifier and generation of a fluorescent signal. The cleaved amplifier dissociates from the 3-way DNA junction, allowing a new amplifier to bind and propagate the reaction. Results: The system detected and genotyped KRAS sequence variants down to ∼0.3% variant-to-wild-type alleles. PNA-PCR/OCEAN had a concordance rate with PNA-PCR/sequencing of 93% to 98%, depending on the exact implementation. Concordance rate with restriction endonuclease-mediated selective-PCR/sequencing was 89%. Conclusion: OCEAN is a practical and low-cost novel technology for sequence-specific signal generation. Reliable analysis of KRAS sequence alterations in human specimens circumvents the requirement for sequencing. Application is expected in genotyping KRAS codon 12 sequence variants in surgical specimens or in bodily fluids, as well as single-base variations and sequence alterations in other genes.


1952 ◽  
Vol 30 (7) ◽  
pp. 501-506 ◽  
Author(s):  
G. W. Meadows ◽  
B. Deb Darwent

The nature of the products obtained from reactions of acetaldehyde with methanol have been investigated in neutral and acidic solutions by titration with iodine and sodium bisulphite, ultraviolet absorption, and infrared spectroscopy. In neutral and buffered solution the hemiacetal is the only important product; in the presence of a high concentration of hydrogen ions the acetal is produced nearly quantitatively.


2005 ◽  
Vol 51 (7) ◽  
pp. 991-998 ◽  
Author(s):  
Tadao Wagatsuma ◽  
Md. Shahadat Hossain Khan ◽  
Idupulapati M. Rao ◽  
Peter Wenzl ◽  
Keitarou Tawaraya ◽  
...  

1994 ◽  
Vol 30 (8) ◽  
pp. 45-54 ◽  
Author(s):  
O. Mizuno ◽  
Y. Y. Li ◽  
T. Noike

The effects of sulfate concentration and COD/S ratio on the anaerobic degradation of butyrate were investigated by using 2.0 L anaerobic chemostat-type reactor at 35°C. The study was conducted over a wide range of the COD/S ratio (1.5 to 148) by varying COD concentrations (2500–10000 mg/L) and sulfate concentrations (68–1667 mg-S/L) in the substrate. The sludge retention time at each COD/S ratio was changed from 5 to 20 days. The interaction between methane producing bacteria (MPB) and sulfate-reducing bacteria (SRB) was evidently influenced by COD/S ratio in the substrate. When COD/S ratio was 6.0 or more, methane production was the predominate reaction and over 80% of the total electron flow was used by MPB. At the COD/S ratio of 1.5, SRB utilzed over 50% of the total electron flow. A large amount of sulfate reduction resulted in not only the decrease of methane production, but also the rapid increase of the bacterial growth. The degradation pathway of butyrate and the composition of bacterial populations in the reactor were also dominated by COD/S ratio. In sulfate depleted condition, butyrate was degraded to methane via acetate and hydrogen by MPB. On the other hand, butyrate was firstly degraded into sulfide and acetate in sulfate rich conditions by SRB, and the produced acetate was then degraded by acetate consuming MPB and SRB. The methanogenesis from acetate was inhibited by the high concentration of sulfide.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1895-1904
Author(s):  
Bothiraj K V ◽  
Kalaivani P ◽  
Murugan K ◽  
Vanitha V

The green coffee bean is the most commonly used beverages in India and it is one of the most commercialised food products. They have a rich source of biologically active compounds that are important for human health. The coffee tree or a shrub belongs to the family Rubiaceae. Commercially available, two species of green coffee bean are Coffea Arabica and Coffea canephora. Cancer is the most important cause of death. Apart from cancer, quercetin can also prevent Osteoporosis. The phytochemicals present in the green coffee bean can be used as an alternate therapy for cancer due to its antimitotic activity and free radical scavenging activity. Total antioxidant shows IC50 value 45.81. Kaempferol is a potent antioxidant that can defence against free radicals and cure chronic diseases. Flavonoids are phenolic substances that act as an antioxidant, anti-inflammatory, anti-allergenic, antiviral and also have vasodilating actions. Green coffee bean shows a high concentration of Flavonoids in hydroethanolic extraction. The aim of this study is used to analyse the presence of Flavonoids in green coffee bean by using High-performance Liquid Chromatography (HPLC). Flavonoids are potent antioxidant that can bind to a protein. Flavonoids show a wide range of biological and pharmacological activities like anti-allergic, anti-inflammatory, anti-cancer and anti-microbial activity.


Sign in / Sign up

Export Citation Format

Share Document