Gravitational instability of partially ionized molecular clouds

2007 ◽  
Vol 73 (6) ◽  
pp. 831-838 ◽  
Author(s):  
A.C. BORAH ◽  
A.K. SEN

AbstractStars are formed as a result of the gravitational (Jeans) collapse of dense clumps in interstellar clouds. These clouds are partially ionized by nearby ionizing sources. We investigate the gravitational instability in such molecular clouds considering the non-Boltzmannian distribution for electrons and ions, which is more realistic than the Boltzmannian distribution. Assuming the perturbation (fluctuation) response in a radial direction as a mathematical analogue of the x-direction in the plane geometry approximation in the form f ∼ exp(ikx–iωt), the equations of motion for different species of the multi-fluid plasma are linearized. Jeans' swindle is used as a local approximation for the equilibrium and the dispersion relation is derived by usual normal mode analysis. Then, an analytical solution to the dispersion equation with an explanation of the effects on star formation is given.

2014 ◽  
Vol 81 (2) ◽  
Author(s):  
Prerana Sharma ◽  
R. K. Chhajlani

The Jeans self-gravitational instability is studied for dense quantum viscous plasma with Hall term and intrinsic magnetization generated by collective electron spin. The quantum magnetohydrodynamic model is employed to formulate the basic equations of the problem. The dispersion relation is obtained using the normal mode analysis, and further reduced for both transverse and longitudinal modes of propagation. The transverse mode of propagation is found to be unaffected by the Hall term but affected by quantum effect, viscosity, and magnetization parameters. The Jeans criterion of instability in the transverse direction is modified by Alfven velocity, magnetization parameter, and quantum effect. The non-gravitating magnetized mode is obtained in the longitudinal direction, which is modified by Hall parameter and is not affected by quantum term, whereas the gravitational mode is unaffected by the magnetization parameter but affected by viscosity and quantum parameters. It is observed that the Jeans condition of instability is affected by the quantum term. The growth rate of Jeans instability is plotted for various values of magnetization, quantum, and viscosity parameters of the quantum plasma medium.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Joginder S. Dhiman ◽  
Rekha Dadwal

The effect of a nonuniform magnetic field on the gravitational instability of a nonuniformly rotating infinitely extending axisymmetric cylinder in a homogenous ferromagnetic medium has been studied. The propagation of the wave is allowed along radial direction. A general dispersion relation, using the normal mode analysis method on the perturbation equations of the problem, is obtained. It is found that Bel and Schatzman criterion determines the gravitational instability of this general problem. Thus, it appears that the effect of non-uniform magnetic field on the gravitational instability as discussed by (Dhiman and Dadwal, 2010) is marginalized by the magnetic polarizability of ferrofluid.


2012 ◽  
Vol 78 (6) ◽  
pp. 683-687 ◽  
Author(s):  
A. A. MAMUN ◽  
N. ROY ◽  
P.K. SHUKLA

AbstractA theoretical investigation has been made of the linear propagation of different electromagnetic modes in a dense electron–ion magnetoplasma containing degenerate electrons and ions. The fluid model and the normal mode analysis have been employed. It has been found that the dispersion properties of the electromagnetic waves propagating in such a degenerate plasma are different (in view of both spatial and temporal scales) from those propagating in the usual electron–ion plasma because of the effects of degenerate plasma pressure, enthalpy, etc. The importance of this work has been discussed also.


2017 ◽  
Vol 22 (1) ◽  
pp. 163-174
Author(s):  
S. Santra ◽  
A. Lahiri ◽  
N.C. Das

Abstract The fundamental equations of the two dimensional generalized thermoelasticity (L-S model) with one relaxation time parameter in orthotropic elastic slab has been considered under effect of rotation. The normal mode analysis is used to the basic equations of motion and heat conduction equation. Finally, the resulting equations are written in the form of a vector-matrix differential equation which is then solved by the eigenvalue approach. The field variables in the space time domain are obtained numerically. The results corresponding to the cases of conventional thermoelasticity CTE), extended thermoelasticity (ETE) and temperature rate dependent thermoelasticity (TRDTE) are compared by means of graphs.


2019 ◽  
Author(s):  
David Wright ◽  
Fouad Husseini ◽  
Shunzhou Wan ◽  
Christophe Meyer ◽  
Herman Van Vlijmen ◽  
...  

<div>Here, we evaluate the performance of our range of ensemble simulation based binding free energy calculation protocols, called ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) for use in fragment based drug design scenarios. ESMACS is designed to generate reproducible binding affinity predictions from the widely used molecular mechanics Poisson-Boltzmann surface area (MMPBSA) approach. We study ligands designed to target two binding pockets in the lactate dehydogenase A target protein, which vary in size, charge and binding mode. When comparing to experimental results, we obtain excellent statistical rankings across this highly diverse set of ligands. In addition, we investigate three approaches to account for entropic contributions not captured by standard MMPBSA calculations: (1) normal mode analysis, (2) weighted solvent accessible surface area (WSAS) and (3) variational entropy. </div>


2001 ◽  
Vol 15 (28n30) ◽  
pp. 3865-3868 ◽  
Author(s):  
H. MIYAOKA ◽  
T. KUZE ◽  
H. SANO ◽  
H. MORI ◽  
G. MIZUTANI ◽  
...  

We have obtained the Raman spectra of TiCl n (n= 2, 3, and 4). Assignments of the observed Raman bands were made by a normal mode analysis. The force constants were determined from the observed Raman band frequencies. We have found that the Ti-Cl stretching force constant increases as the oxidation number of the Ti species increases.


2020 ◽  
Vol 153 (21) ◽  
pp. 215103
Author(s):  
Alexander Klinger ◽  
Dominik Lindorfer ◽  
Frank Müh ◽  
Thomas Renger

2009 ◽  
Vol 60 (2) ◽  
pp. 169-173 ◽  
Author(s):  
Sayan K. Chakrabarti ◽  
Pulak Ranjan Giri ◽  
Kumar S. Gupta

1971 ◽  
Vol 5 (2) ◽  
pp. 239-263 ◽  
Author(s):  
Z. Sedláček

Small amplitude electrostatic oscillations in a cold plasma with continuously varying density have been investigated. The problem is the same as that treated by Barston (1964) but instead of his normal-mode analysis we employ the Laplace transform approach to solve the corresponding initial-value problem. We construct the Green function of the differential equation of the problem to show that there are branch-point singularities on the real axis of the complex frequency-plane, which correspond to the singularities of the Barston eigenmodes and which, asymptotically, give rise to non-collective oscillations with position-dependent frequency and damping proportional to negative powers of time. In addition we find an infinity of new singularities (simple poles) of the analytic continuation of the Green function into the lower half of the complex frequency-plane whose position is independent of the spatial co-ordinate so that they represent collective, exponentially damped modes of plasma oscillations. Thus, although there may be no discrete spectrum, in a more general sense a dispersion relation does exist but must be interpreted in the same way as in the case of Landau damping of hot plasma oscillations.


2016 ◽  
Vol 120 (33) ◽  
pp. 8276-8288 ◽  
Author(s):  
Xin-Qiu Yao ◽  
Lars Skjærven ◽  
Barry J. Grant

Sign in / Sign up

Export Citation Format

Share Document