On the use of inaccessible numbers and order indiscernibles in lower bound arguments for random access machines

1988 ◽  
Vol 53 (4) ◽  
pp. 1098-1109 ◽  
Author(s):  
Wolfgang Maass

AbstractWe prove optimal lower bounds on the computation time for several well-known test problems on a quite realistic computational model: the random access machine. These lower bound arguments may be of special interest for logicians because they rely on finitary analogues of two important concepts from mathematical logic: inaccessible numbers and order indiscernibles.

1997 ◽  
Vol 62 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Dany Breslauer ◽  
Artur Czumaj ◽  
Devdatt P. Dubhashi ◽  
Friedhelm Meyer auf der Heide

1996 ◽  
Vol 3 (9) ◽  
Author(s):  
Thore Husfeldt ◽  
Theis Rauhe ◽  
Søren Skyum

We give a number of new lower bounds in the cell probe model<br />with logarithmic cell size, which entails the same bounds on the random access computer with logarithmic word size and unit cost operations. We study the signed prefix sum problem: given a string of length n of zeroes and signed ones, compute the sum of its ith prefix during updates. We show a<br />lower bound of  Omega(log n/log log n) time per operations, even if the prefix sums are bounded by log n/log log n during all updates. We also show that if the update time is bounded by the product of the worst-case update time and the<br />answer to the query, then the update time must be Omega(sqrt(log n/ log log n)).<br /> These results allow us to prove lower bounds for a variety of seemingly unrelated<br />dynamic problems. We give a lower bound for the dynamic planar point location in monotone subdivisions of <br />Omega(log n/ log log n) per operation. We give<br />a lower bound for the dynamic transitive closure problem on upward planar graphs with one source and one sink of <br />Omega(log n/(log logn)^2) per operation. We give a lower bound of  Omega(sqrt(log n/log log n)) for the dynamic membership problem of any Dyck language with two or more letters. This implies the same<br />lower bound for the dynamic word problem for the free group with k generators. We also give lower bounds for the dynamic prefix majority and prefix equality problems.


1995 ◽  
Vol 2 (10) ◽  
Author(s):  
Dany Breslauer ◽  
Devdatt P. Dubhashi

This note provides general transformations of lower bounds in Valiant's<br />parallel comparison decision tree model to lower bounds in the priority<br />concurrent-read concurrent-write parallel-random-access-machine model.<br />The proofs rely on standard Ramsey-theoretic arguments that simplify<br />the structure of the computation by restricting the input domain. The<br />transformation of comparison model lower bounds, which are usually easier<br />to obtain, to the parallel-random-access-machine, unifies some known<br />lower bounds and gives new lower bounds for several problems.


10.37236/1188 ◽  
1994 ◽  
Vol 1 (1) ◽  
Author(s):  
Geoffrey Exoo

For $k \geq 5$, we establish new lower bounds on the Schur numbers $S(k)$ and on the k-color Ramsey numbers of $K_3$.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.


2021 ◽  
Vol 13 (3) ◽  
pp. 1-21
Author(s):  
Suryajith Chillara

In this article, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which the polynomial computed at every node has a bound on the individual degree of r ≥ 1 with respect to all its variables (referred to as multi- r -ic circuits). The goal of this study is to make progress towards proving superpolynomial lower bounds for general depth four circuits computing multilinear polynomials, by proving better bounds as the value of r increases. Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four arithmetic circuit of bounded individual degree r computing an explicit multilinear polynomial on n O (1) variables and degree d must have size at least ( n / r 1.1 ) Ω(√ d / r ) . This bound, however, deteriorates as the value of r increases. It is a natural question to ask if we can prove a bound that does not deteriorate as the value of r increases, or a bound that holds for a larger regime of r . In this article, we prove a lower bound that does not deteriorate with increasing values of r , albeit for a specific instance of d = d ( n ) but for a wider range of r . Formally, for all large enough integers n and a small constant η, we show that there exists an explicit polynomial on n O (1) variables and degree Θ (log 2 n ) such that any depth four circuit of bounded individual degree r ≤ n η must have size at least exp(Ω(log 2 n )). This improvement is obtained by suitably adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017).


2020 ◽  
Vol 30 (1) ◽  
pp. 175-192
Author(s):  
NathanaËl Fijalkow

Abstract This paper studies the complexity of languages of finite words using automata theory. To go beyond the class of regular languages, we consider infinite automata and the notion of state complexity defined by Karp. Motivated by the seminal paper of Rabin from 1963 introducing probabilistic automata, we study the (deterministic) state complexity of probabilistic languages and prove that probabilistic languages can have arbitrarily high deterministic state complexity. We then look at alternating automata as introduced by Chandra, Kozen and Stockmeyer: such machines run independent computations on the word and gather their answers through boolean combinations. We devise a lower bound technique relying on boundedly generated lattices of languages, and give two applications of this technique. The first is a hierarchy theorem, stating that there are languages of arbitrarily high polynomial alternating state complexity, and the second is a linear lower bound on the alternating state complexity of the prime numbers written in binary. This second result strengthens a result of Hartmanis and Shank from 1968, which implies an exponentially worse lower bound for the same model.


Algorithmica ◽  
2021 ◽  
Author(s):  
Seungbum Jo ◽  
Rahul Lingala ◽  
Srinivasa Rao Satti

AbstractWe consider the problem of encoding two-dimensional arrays, whose elements come from a total order, for answering $${\text{Top-}}{k}$$ Top- k queries. The aim is to obtain encodings that use space close to the information-theoretic lower bound, which can be constructed efficiently. For an $$m \times n$$ m × n array, with $$m \le n$$ m ≤ n , we first propose an encoding for answering 1-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, whose query range is restricted to $$[1 \dots m][1 \dots a]$$ [ 1 ⋯ m ] [ 1 ⋯ a ] , for $$1 \le a \le n$$ 1 ≤ a ≤ n . Next, we propose an encoding for answering for the general (4-sided) $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries that takes $$(m\lg {{(k+1)n \atopwithdelims ()n}}+2nm(m-1)+o(n))$$ ( m lg ( k + 1 ) n n + 2 n m ( m - 1 ) + o ( n ) ) bits, which generalizes the joint Cartesian tree of Golin et al. [TCS 2016]. Compared with trivial $$O(nm\lg {n})$$ O ( n m lg n ) -bit encoding, our encoding takes less space when $$m = o(\lg {n})$$ m = o ( lg n ) . In addition to the upper bound results for the encodings, we also give lower bounds on encodings for answering 1 and 4-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, which show that our upper bound results are almost optimal.


1970 ◽  
Vol 37 (2) ◽  
pp. 267-270 ◽  
Author(s):  
D. Pnueli

A method is presented to obtain both upper and lower bound to eigenvalues when a variational formulation of the problem exists. The method consists of a systematic shift in the weight function. A detailed procedure is offered for one-dimensional problems, which makes improvement of the bounds possible, and which involves the same order of detailed computation as the Rayleigh-Ritz method. The main contribution of this method is that it yields the “other bound;” i.e., the one which cannot be obtained by the Rayleigh-Ritz method.


Sign in / Sign up

Export Citation Format

Share Document