Further species diversity in Neotropical Oropogon (Lecanoromycetes: Parmeliaceae) in Central America

2013 ◽  
Vol 45 (4) ◽  
pp. 553-564 ◽  
Author(s):  
Steven D. LEAVITT ◽  
Theodore L. ESSLINGER ◽  
Matthew P. NELSEN ◽  
H. Thorsten LUMBSCH

AbstractThe new species Oropogon evernicus Essl. & S. Leavitt and O. protocetraricus S. Leavitt & Essl. are described from montane regions of Central America, further increasing the diversity of this genus in the New World. Oropogon evernicus is separated from O. americanus by the presence of medullary tissue directly beneath the pseudocyphellae, while O. protocetraricus is separated from O. caespitosus by the presence of protocetraric acid. The segregation of both species is confirmed by molecular sequence data (nuclear ITS, nuLSU, and β-tubulin). Both species appear to have split from their most recent common ancestor during the Miocene, supporting Miocene-dominated diversification of neotropical Oropogon species found in Central America.

2013 ◽  
Vol 9 (6) ◽  
pp. 20130748 ◽  
Author(s):  
Sankar Subramanian ◽  
Gabrielle Beans-Picón ◽  
Siva K. Swaminathan ◽  
Craig D. Millar ◽  
David M. Lambert

Penguins are a remarkable group of birds, with the 18 extant species living in diverse climatic zones from the tropics to Antarctica. The timing of the origin of these extant penguins remains controversial. Previous studies based on DNA sequences and fossil records have suggested widely differing times for the origin of the group. This has given rise to widely differing biogeographic narratives about their evolution. To resolve this problem, we sequenced five introns from 11 species representing all genera of living penguins. Using these data and other available DNA sequences, together with the ages of multiple penguin fossils to calibrate the molecular clock, we estimated the age of the most recent common ancestor of extant penguins to be 20.4 Myr (17.0–23.8 Myr). This time is half of the previous estimates based on molecular sequence data. Our results suggest that most of the major groups of extant penguins diverged 11–16 Ma. This overlaps with the sharp decline in Antarctic temperatures that began approximately 12 Ma, suggesting a possible relationship between climate change and penguin evolution.


Author(s):  
David J. States ◽  
Mark S. Boguski

Properly approached, molecular sequence data is a rich source of knowledge capable of teaching us much about the structure, function, and evolution of biological macromolecules. To effectively realize this potential, however, some understanding of the process of and theoretical basis for sequence comparison is needed as well as a variety of practical tools to access and manipulate the data. The volume of molecular sequence data has long since surpassed human information processing capacity for even simple tasks such as searching for related sequences, and with the ever increasing rate at which new sequences are being produced, the need for computer-assisted analysis becomes more and more acute. Automated tools can extend human capabilities by orders of magnitude in both speed and accuracy. The educated application of these automated tools is an essential part of modern molecular biology research. This chapter considers the theory and practice of analyzing sequence similarity as it applies to database searching and sequence alignment. Five major areas will be examined. First, we describe the use of dot matrix plots to elucidate the structures and features relating a sequence pair. Secondly, we discuss optimal pairwise alignment of sequences using dynamic programming algorithms. Thirdly, we examine fast, approximate techniques for detecting local similarities. Fourthly, the uses of and techniques for multiple sequence alignment are described. Finally, the statistical significance of sequence similarity is considered. In the analysis of molecular sequences, the terms similarity andhomology are often used without a clear understanding of their distinct implications. Similarity is a descriptive term which only implies that two sequences, by some criterion, resemble each other and carries no suggestion as to their origins or ancestry. Homology refers specifically to similarity due to descent from a common ancestor (Patterson, 1988;Reeck etal., 1987). On the basis of similarity relationships among a group of sequences, it may be possible to infer homology, but outside of an explicit laboratory model system, descent from a common ancestor remains hypothetical. There are philosophical issues in the inference of homology as well as practical ones. In classical morphology, conjunction (the occurrence of two traits in a single individual) is considered evidence that they are not homologous (Patterson, 1982).


Zootaxa ◽  
2010 ◽  
Vol 2553 (1) ◽  
pp. 35 ◽  
Author(s):  
MARJOLAINE GIROUX ◽  
TERRY A. WHEELER

Sarcophaga (Bulbostyla) subgen. nov. is described as a new subgenus of Sarcophaga Meigen to accommodate some species previously assigned to the subgenus S. (Neobellieria) Blanchard. Sarcophaga (Bulbostyla) contains nine species: S. airosalis sp. nov., S. cadyi sp. nov. (type species), S. cuautla sp. nov., S. fattigina sp. nov., S. ironalis sp. nov., S. semimarginalis Hall, S. sternalis (Reinhard), S. subdiscalis Aldrich and S. yorkii Parker. All species are described and illustrated and a key to the species is provided. The species within the subgenus are morphologically uniform externally and are distinguished mostly on male genitalic characters. Phylogenetic relationships within Bulbostyla are unresolved based on morphological characters and will require consideration of additional characters, such as molecular sequence data. The genus-group taxon Robackina Lopes is removed from synonymy with the subgenus Sarcophaga (Neobellieria) and reinstated as a valid subgenus of Sarcophaga (stat. nov.) to accommodate the single New World species Sarcophaga triplasia Wulp. A lectotype is designated for S. triplasia. The subgenus and species are redescribed and illustrated.


2003 ◽  
Vol 17 (4) ◽  
pp. 605 ◽  
Author(s):  
Philip S. Ward ◽  
Seán G. Brady

We investigated phylogenetic relationships among the 'primitive' Australian ant genera Myrmecia and Nothomyrmecia (stat. rev.) and the Baltic amber fossil genus Prionomyrmex, using a combination of morphological and molecular data. Outgroups for the analysis included representatives from a variety of potential sister-groups, including five extant subfamilies of ants and one extinct group (Sphecomyrminae). Parsimony analysis of the morphological data provides strong support (~95% bootstrap proportions) for the monophyly of (1) genus Myrmecia, (2) genus Prionomyrmex, and (3) a clade containing those two genera plus Nothomyrmecia. A group comprising Nothomyrmecia and Prionomyrmex is also upheld (85% bootstrap support). Molecular sequence data (~2200 base pairs from the 18S and 28S ribosomal RNA genes) corroborate these findings for extant taxa, with Myrmecia and Nothomyrmecia appearing as sister-groups with ~100% bootstrap support under parsimony, neighbour-joining and maximum-likelihood analyses. Neither the molecular nor the morphological data set allows us to identify unambiguously the sister-group of (Myrmecia + (Nothomyrmecia + Prionomyrmex)). Rather, Myrmecia and relatives are part of an unresolved polytomy that encompasses most of the ant subfamilies. Taken as a whole, our results support the contention that many of the major lineages of ants – including a clade that later came to contain Myrmecia, Nothomyrmecia and Prionomyrmex – arose at around the same time during a bout of diversification in the middle or late Cretaceous. On the basis of Bayesian dating analysis, the estimated age of the most recent common ancestor of Myrmecia and Nothomyrmecia is 74 million years (95% confidence limits, 53–101�million years), a result consistent with the origin of the myrmeciine stem lineage in the Cretaceous. The ant subfamily Myrmeciinae is redefined to contain two tribes, Myrmeciini (genus Myrmecia) and Prionomyrmecini (Nothomyrmecia and Prionomyrmex). Phylogenetic analysis of the enigmatic Argentine fossils Ameghinoia and Polanskiella demonstrates that they are also members of the Myrmeciinae, probably more closely related to Prionomyrmecini than to Myrmeciini. Thus, the myrmeciine ants appear to be a formerly widespread group that retained many ancestral formicid characteristics and that became extinct everywhere except in the Australian region.


2006 ◽  
Vol 31 (3) ◽  
pp. 461-480 ◽  
Author(s):  
Damon P. Little

Recent phylogenetic investigations of Cupressoideae have found evidence to suggest that Cupressus is not monophyletic. This study tested the division of Cupressus into an Old World clade and a New World clade with complete sampling of the 28 extant species. Data from anatomy, biochemistry, micromorphology, reproductive development, reproductive morphology, and vegetative morphology were combined with molecular sequence data (matK, NEEDLY intron 2, nrITS, rbcL, and trnL) to produce the most complete hypothesis of evolutionary relationships within Cupressoideae to date. Callitropsis, Cupressus, and Juniperus formed a well–supported monophyletic group (100%). Within this clade, the only demonstrably monophyletic genus was Juniperus (100%). Monophyly of the 12 Old World species of Cupressus was well supported (100%). Old World species of Cupressus were sister to Juniperus (99%). Callitropsis and the 16 New World species of Cupressus were resolved as the sister group to the Old World Cupressus plus Juniperus clade (100%), rendering Cupressus polyphyletic. The relationship between Callitropsis and the New World species of Cupressus was not resolved. Based on the results of the combined analysis, generic circumscriptions were modified: Cupressus was restricted exclusively to Old World species and Callitropsis was expanded to include the New World species previously classified as Cupressus (seventeen new combinations in Callitropsis were made).


2019 ◽  
Author(s):  
S. Lycett ◽  
V.N. Tanya ◽  
M. Hall ◽  
D. King ◽  
S. Mazeri ◽  
...  

ABSTRACTFoot-and-mouth disease (FMD) is a major livestock disease with direct clinical impacts as well as indirect trade implications. Control through vaccination and stamping-out has successfully reduced or eradicated the disease from Europe and large parts of South America. However, sub-Saharan Africa remains endemically affected with 5/7 serotypes currently known to be circulating across the continent. This has significant implications both locally for livestock production and poverty reduction but also globally as it represents a major reservoir of viruses, which could spark new epidemics in disease free countries or vaccination zones. This paper describes the phylodynamics of serotypes A and SAT2 in Africa including recent isolates from Cameroon in Central Africa. We estimated the most recent common ancestor for serotype A was an East African virus from the 1930s compared to SAT2 which has a much older common ancestor from the early 1700s. Detailed analysis of the different clades shows clearly that different clades are evolving and diffusing across the landscape at different rates with both serotypes having a particularly recent clade that is evolving and spreading more rapidly than other clades within their serotype. However, the lack of detailed sequence data available for Africa seriously limits our understanding of FMD epidemiology across the continent. A comprehensive view of the evolutionary history and dynamics of FMD viruses is essential to understand many basic epidemiological aspects of FMD in Africa such as the scale of persistence and the role of wildlife and thus the opportunities and scale at which vaccination and other controls could be applied. Finally we ask endemic countries to join the OIE/FAO supported regional networks and take advantage of new cheap technologies being rolled out to collect isolates and submit them to the World Reference Laboratory.


2004 ◽  
Vol 36 (2) ◽  
pp. 125-131 ◽  
Author(s):  
Magdalena OPANOWICZ ◽  
Martin GRUBE

Molecular sequence data of the nuclear ITS region was used to investigate the diversity of photobionts in Polish samples of Flavocetraria nivalis. The samples came both from alpine habitats, as well as from lowland localities near the coast. All green algal symbionts were identified as members of the Trebouxia simplex aggregate. These were compared with those of additional samples from Flavocetraria nivalis collected in different parts of Europe and also with photobionts assigned to T. simplex from other lichens. Within the T. simplex aggregate, the Trebouxia ITS sequences from F. nivalis formed four clades. In the Polish lowland populations only a single clade of T. simplex was detected which also occurs in Polish mountains, south Sweden and Austria. A further clade of T. simplex is present in F. nivalis from Polish mountains and is also known from F. nivalis further north in Scandinavia and Greenland, as well as from other lichens in Sweden, the Austrian Alps, and Antarctica.


2003 ◽  
Vol 17 (3) ◽  
pp. 361 ◽  
Author(s):  
Philip S. Ward ◽  
Seán G. Brady

We investigated phylogenetic relationships among the 'primitive' Australian ant genera Myrmecia and Nothomyrmecia (stat. rev.) and the Baltic amber fossil genus Prionomyrmex, using a combination of morphological and molecular data. Outgroups for the analysis included representatives from a variety of potential sister-groups, including five extant subfamilies of ants and one extinct group (Sphecomyrminae). Parsimony analysis of the morphological data provides strong support (~95% bootstrap proportions) for the monophyly of (1) genus Myrmecia, (2) genus Prionomyrmex, and (3) a clade containing those two genera plus Nothomyrmecia. A group comprising Nothomyrmecia and Prionomyrmex is also upheld (85% bootstrap support). Molecular sequence data (~2200 base pairs from the 18S and 28S ribosomal RNA genes) corroborate these findings for extant taxa, with Myrmecia and Nothomyrmecia appearing as sister-groups with ~100% bootstrap support under parsimony, neighbour-joining and maximum-likelihood analyses. Neither the molecular nor the morphological data set allows us to identify unambiguously the sister-group of (Myrmecia + (Nothomyrmecia + Prionomyrmex)). Rather, Myrmecia and relatives are part of an unresolved polytomy that encompasses most of the ant subfamilies. Taken as a whole, our results support the contention that many of the major lineages of ants – including a clade that later came to contain Myrmecia, Nothomyrmecia and Prionomyrmex – arose at around the same time during a bout of diversification in the middle or late Cretaceous. On the basis of Bayesian dating analysis, the estimated age of the most recent common ancestor of Myrmecia and Nothomyrmecia is 74 million years (95% confidence limits, 53–101million years), a result consistent with the origin of the myrmeciine stem lineage in the Cretaceous. The ant subfamily Myrmeciinae is redefined to contain two tribes, Myrmeciini (genus Myrmecia) and Prionomyrmecini (Nothomyrmecia and Prionomyrmex). Phylogenetic analysis of the enigmatic Argentine fossils Ameghinoia and Polanskiella demonstrates that they are also members of the Myrmeciinae, probably more closely related to Prionomyrmecini than to Myrmeciini. Thus, the myrmeciine ants appear to be a formerly widespread group that retained many ancestral formicid characteristics and that became extinct everywhere except in the Australian region.


Genetics ◽  
1998 ◽  
Vol 150 (3) ◽  
pp. 1187-1198 ◽  
Author(s):  
Mikkel H Schierup ◽  
Xavier Vekemans ◽  
Freddy B Christiansen

Abstract Expectations for the time scale and structure of allelic genealogies in finite populations are formed under three models of sporophytic self-incompatibility. The models differ in the dominance interactions among the alleles that determine the self-incompatibility phenotype: In the SSIcod model, alleles act codominantly in both pollen and style, in the SSIdom model, alleles form a dominance hierarchy, and in SSIdomcod, alleles are codominant in the style and show a dominance hierarchy in the pollen. Coalescence times of alleles rarely differ more than threefold from those under gametophytic self-incompatibility, and transspecific polymorphism is therefore expected to be equally common. The previously reported directional turnover process of alleles in the SSIdomcod model results in coalescence times lower and substitution rates higher than those in the other models. The SSIdom model assumes strong asymmetries in allelic action, and the most recessive extant allele is likely to be the most recent common ancestor. Despite these asymmetries, the expected shape of the allele genealogies does not deviate markedly from the shape of a neutral gene genealogy. The application of the results to sequence surveys of alleles, including interspecific comparisons, is discussed.


Author(s):  
Wenjun Cheng ◽  
Tianjiao Ji ◽  
Shuaifeng Zhou ◽  
Yong Shi ◽  
Lili Jiang ◽  
...  

AbstractEchovirus 6 (E6) is associated with various clinical diseases and is frequently detected in environmental sewage. Despite its high prevalence in humans and the environment, little is known about its molecular phylogeography in mainland China. In this study, 114 of 21,539 (0.53%) clinical specimens from hand, foot, and mouth disease (HFMD) cases collected between 2007 and 2018 were positive for E6. The complete VP1 sequences of 87 representative E6 strains, including 24 strains from this study, were used to investigate the evolutionary genetic characteristics and geographical spread of E6 strains. Phylogenetic analysis based on VP1 nucleotide sequence divergence showed that, globally, E6 strains can be grouped into six genotypes, designated A to F. Chinese E6 strains collected between 1988 and 2018 were found to belong to genotypes C, E, and F, with genotype F being predominant from 2007 to 2018. There was no significant difference in the geographical distribution of each genotype. The evolutionary rate of E6 was estimated to be 3.631 × 10-3 substitutions site-1 year-1 (95% highest posterior density [HPD]: 3.2406 × 10-3-4.031 × 10-3 substitutions site-1 year-1) by Bayesian MCMC analysis. The most recent common ancestor of the E6 genotypes was traced back to 1863, whereas their common ancestor in China was traced back to around 1962. A small genetic shift was detected in the Chinese E6 population size in 2009 according to Bayesian skyline analysis, which indicated that there might have been an epidemic around that year.


Sign in / Sign up

Export Citation Format

Share Document