scholarly journals Corrigendum to: Phylogeny and biogeography of the ant subfamily Myrmeciinae (Hymenoptera : Formicidae)

2003 ◽  
Vol 17 (4) ◽  
pp. 605 ◽  
Author(s):  
Philip S. Ward ◽  
Seán G. Brady

We investigated phylogenetic relationships among the 'primitive' Australian ant genera Myrmecia and Nothomyrmecia (stat. rev.) and the Baltic amber fossil genus Prionomyrmex, using a combination of morphological and molecular data. Outgroups for the analysis included representatives from a variety of potential sister-groups, including five extant subfamilies of ants and one extinct group (Sphecomyrminae). Parsimony analysis of the morphological data provides strong support (~95% bootstrap proportions) for the monophyly of (1) genus Myrmecia, (2) genus Prionomyrmex, and (3) a clade containing those two genera plus Nothomyrmecia. A group comprising Nothomyrmecia and Prionomyrmex is also upheld (85% bootstrap support). Molecular sequence data (~2200 base pairs from the 18S and 28S ribosomal RNA genes) corroborate these findings for extant taxa, with Myrmecia and Nothomyrmecia appearing as sister-groups with ~100% bootstrap support under parsimony, neighbour-joining and maximum-likelihood analyses. Neither the molecular nor the morphological data set allows us to identify unambiguously the sister-group of (Myrmecia + (Nothomyrmecia + Prionomyrmex)). Rather, Myrmecia and relatives are part of an unresolved polytomy that encompasses most of the ant subfamilies. Taken as a whole, our results support the contention that many of the major lineages of ants – including a clade that later came to contain Myrmecia, Nothomyrmecia and Prionomyrmex – arose at around the same time during a bout of diversification in the middle or late Cretaceous. On the basis of Bayesian dating analysis, the estimated age of the most recent common ancestor of Myrmecia and Nothomyrmecia is 74 million years (95% confidence limits, 53–101�million years), a result consistent with the origin of the myrmeciine stem lineage in the Cretaceous. The ant subfamily Myrmeciinae is redefined to contain two tribes, Myrmeciini (genus Myrmecia) and Prionomyrmecini (Nothomyrmecia and Prionomyrmex). Phylogenetic analysis of the enigmatic Argentine fossils Ameghinoia and Polanskiella demonstrates that they are also members of the Myrmeciinae, probably more closely related to Prionomyrmecini than to Myrmeciini. Thus, the myrmeciine ants appear to be a formerly widespread group that retained many ancestral formicid characteristics and that became extinct everywhere except in the Australian region.

2003 ◽  
Vol 17 (3) ◽  
pp. 361 ◽  
Author(s):  
Philip S. Ward ◽  
Seán G. Brady

We investigated phylogenetic relationships among the 'primitive' Australian ant genera Myrmecia and Nothomyrmecia (stat. rev.) and the Baltic amber fossil genus Prionomyrmex, using a combination of morphological and molecular data. Outgroups for the analysis included representatives from a variety of potential sister-groups, including five extant subfamilies of ants and one extinct group (Sphecomyrminae). Parsimony analysis of the morphological data provides strong support (~95% bootstrap proportions) for the monophyly of (1) genus Myrmecia, (2) genus Prionomyrmex, and (3) a clade containing those two genera plus Nothomyrmecia. A group comprising Nothomyrmecia and Prionomyrmex is also upheld (85% bootstrap support). Molecular sequence data (~2200 base pairs from the 18S and 28S ribosomal RNA genes) corroborate these findings for extant taxa, with Myrmecia and Nothomyrmecia appearing as sister-groups with ~100% bootstrap support under parsimony, neighbour-joining and maximum-likelihood analyses. Neither the molecular nor the morphological data set allows us to identify unambiguously the sister-group of (Myrmecia + (Nothomyrmecia + Prionomyrmex)). Rather, Myrmecia and relatives are part of an unresolved polytomy that encompasses most of the ant subfamilies. Taken as a whole, our results support the contention that many of the major lineages of ants – including a clade that later came to contain Myrmecia, Nothomyrmecia and Prionomyrmex – arose at around the same time during a bout of diversification in the middle or late Cretaceous. On the basis of Bayesian dating analysis, the estimated age of the most recent common ancestor of Myrmecia and Nothomyrmecia is 74 million years (95% confidence limits, 53–101million years), a result consistent with the origin of the myrmeciine stem lineage in the Cretaceous. The ant subfamily Myrmeciinae is redefined to contain two tribes, Myrmeciini (genus Myrmecia) and Prionomyrmecini (Nothomyrmecia and Prionomyrmex). Phylogenetic analysis of the enigmatic Argentine fossils Ameghinoia and Polanskiella demonstrates that they are also members of the Myrmeciinae, probably more closely related to Prionomyrmecini than to Myrmeciini. Thus, the myrmeciine ants appear to be a formerly widespread group that retained many ancestral formicid characteristics and that became extinct everywhere except in the Australian region.


The Auk ◽  
2007 ◽  
Vol 124 (1) ◽  
pp. 71-84 ◽  
Author(s):  
W. Andrew Cox ◽  
Rebecca T. Kimball ◽  
Edward L. Braun

Abstract The evolutionary relationship between the New World quail (Odontophoridae) and other groups of Galliformes has been an area of debate. In particular, the relationship between the New World quail and guineafowl (Numidinae) has been difficult to resolve. We analyzed >8 kb of DNA sequence data from 16 taxa that represent all major lineages of Galliformes to resolve the phylogenetic position of New World quail. A combined data set of eight nuclear loci and three mitochondrial regions analyzed with maximum parsimony, maximum likelihood, and Bayesian methods provide congruent and strong support for New World quail being basal members of a phasianid clade that excludes guineafowl. By contrast, the three mitochondrial regions exhibit modest incongruence with each other. This is reflected in the combined mitochondrial analyses that weakly support the Sibley-Ahlquist topology that placed the New World quail basal in relation to guineafowl and led to the placement of New World quail in its own family, sister to the Phasianidae. However, simulation-based topology tests using the mitochondrial data were unable to reject the topology suggested by our combined (mitochondrial and nuclear) data set. By contrast, similar tests using our most likely topology and our combined nuclear and mitochondrial data allow us to strongly reject the Sibley-Ahlquist topology and a topology based on morphological data that unites Old and New World quail. Posición Filogenética de las Codornices del Nuevo Mundo (Odontophoridae): Ocho Loci Nucleares y Tres Regiones Mitocondriales Contradicen la Morfología y la Filogenia de Sibley y Ahlquist


Author(s):  
T.S. Kemp

The vast majority of living and fossil mammals are placentals. Today there are about 4,400 species, which are traditionally organised into 18 Orders, with an extra one if the Pinnipedia are separated from the Carnivora, and a twentieth if the recently extinct Malagasy order Bibymalagasia is recognised as such. There have been many attempts to discover supraordinal groupings from amongst these Orders based on morphological characters, though few proposals have been universally accepted. It is only with the advent of increasingly large sets of molecular sequence data in the last few years that a reasonably robust resolution looks imminent, although these contemporary analyses are remarkably and controversially at odds with the traditional ones. Novacek et al. (1988) summarised the then current situation regarding supraordinal classification of placentals, a time at which morphology was still dominant but molecular data was at the threshold of significance. They accepted a basal group Edentata that combined the Xenarthra of the New World with the Pholidota of the Old, based on a few cranial characters, loss of the anterior teeth, and reduction of the enamel of the remaining ones. This left the rest of the living placentals as a monophyletic group Epitheria, sharing such apparently minor characters as the shape of the stapes bone in the ear. They found very little resolution within the Epitheria, and concluded that there was a polychotomy of no less than nine lineages arranged as a ‘star’ phylogeny. No remnant of the previously recognised taxon Ferungulata, created by Simpson (1945) for the Carnivora plus the ungulate orders Artiodactyla, Perissodactyla, Proboscidea, Hyracoidea, Sirenia, and Tubulidentata remained. On the other hand, three supra ordinal taxa of earlier authors did survive. One was Gregory’s (1910) Archonta, consisting of generally conservative forms and by now composed of the Primates, Dermoptera, Scandentia, and Chiroptera, but excluding the Lipotyphla. The second was Glires, originating with Linnaeus (1758) and widely accepted ever since, for the Rodentia and Lagomorpha; Novacek et al. (1988) tentatively placed the Macroscelidea as the sister-group of the Glires. The third supraordinal taxon recognised was, like Glires, well-established if not universally accepted.


Zootaxa ◽  
2007 ◽  
Vol 1423 (1) ◽  
pp. 1-26 ◽  
Author(s):  
JEFFREY H. SKEVINGTON ◽  
CHRISTIAN KEHLMAIER ◽  
GUNILLA STÅHLS

Sequence data from 658 base pairs of mitochondrial cytochrome c oxidase I (cox1) were analysed for 28 described species of Pipunculidae (Diptera) in an effort to test the concept of DNA Barcoding on this family. Two recently revised but distantly related pipunculid lineages with presumed different evolutionary histories were used for the test (Clistoabdominalis Skevington, 2001 and Nephrocerus Zetterstedt, 1838). An effort was made to test the concept using sister taxa and morphologically similar sibling species swarms in these two genera. Morphological species concepts for Clistoabdominalis taxa were either supported by cox1 data or found to be too broad. Most of the discordance could be accounted for after reassessing morphological characters. In these cases, the molecular data were invaluable in assisting taxonomic decision-making. The radiation of Nearctic species of Nephrocerus could not be diagnosed using cox1. The ability of cox1 to recover phylogenetic signal was also tested on Clistoabdominalis. Morphological data for Clistoabdominalis were combined with the molecular data set. The pipunculid phylogeny from molecular data closely resembles the published phylogeny based on morphology. Partitioned Bremer support is used to localize areas of conflict between the datasets.


2001 ◽  
Vol 32 (2) ◽  
pp. 205-216 ◽  
Author(s):  
John W.H. Trueman ◽  
Rita Marullo ◽  
Laurence A. Mound

AbstractThe subfamily Panchaetothripinae, comprising 35 genera and 98 species, includes several pest species of which the most notorious is the greenhouse thrips, Heliothrips haemorrhoidalis. In an attempt to establish the sister-group of Heliothrips, the relationships of this genus to 31 of the other genera in the subfamily were examined cladistically, using 35 parsimony-informative morphological characters. The analysis indicated that there was no support for two of the three tribes into which this subfamily is customarily arranged, the Monilothripini and the Panchaetothripini, but weak support for the tribe Tryphactothripini. No clear sister-group relationship could be identified for the New World genus Heliothrips, although it grouped with three old world genera Australothrips, Retithrips and Rhipiphorothrips. It is concluded that a morphological data set is not capable of producing a robust phylogeny of the Panchaetothripinae, and that the subject requires re-examination using molecular data.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3844 ◽  
Author(s):  
Cara Van Der Wal ◽  
Shane T. Ahyong ◽  
Simon Y.W. Ho ◽  
Nathan Lo

The crustacean order Stomatopoda comprises seven superfamilies of mantis shrimps, found in coastal waters of the tropics and subtropics. These marine carnivores bear notable raptorial appendages for smashing or spearing prey. We investigated the evolutionary relationships among stomatopods using phylogenetic analyses of three mitochondrial and two nuclear markers. Our analyses recovered the superfamily Gonodactyloidea as polyphyletic, withHemisquillaas the sister group to all other extant stomatopods. A relaxed molecular clock, calibrated by seven fossil-based age constraints, was used to date the origin and major diversification events of stomatopods. Our estimates suggest that crown-group stomatopods (Unipeltata) diverged from their closest crustacean relatives about 340 Ma (95% CRI [401–313 Ma]). We found that the specialized smashing appendage arose after the spearing appendage ∼126 Ma (95% CRI [174–87 Ma]). Ancestral state reconstructions revealed that the most recent common ancestor of extant stomatopods had eyes with six midband rows of hexagonal ommatidia. Hexagonal ommatidia are interpreted as plesiomorphic in stomatopods, and this is consistent with the malacostracan ground-plan. Our study provides insight into the evolutionary timescale and systematics of Stomatopoda, although further work is required to resolve with confidence the phylogenetic relationships among its superfamilies.


2005 ◽  
Vol 272 (1572) ◽  
pp. 1577-1586 ◽  
Author(s):  
Niklas Wahlberg ◽  
Michael F Braby ◽  
Andrew V.Z Brower ◽  
Rienk de Jong ◽  
Ming-Min Lee ◽  
...  

Phylogenetic relationships among major clades of butterflies and skippers have long been controversial, with no general consensus even today. Such lack of resolution is a substantial impediment to using the otherwise well studied butterflies as a model group in biology. Here we report the results of a combined analysis of DNA sequences from three genes and a morphological data matrix for 57 taxa (3258 characters, 1290 parsimony informative) representing all major lineages from the three putative butterfly super-families (Hedyloidea, Hesperioidea and Papilionoidea), plus out-groups representing other ditrysian Lepidoptera families. Recently, the utility of morphological data as a source of phylogenetic evidence has been debated. We present the first well supported phylogenetic hypothesis for the butterflies and skippers based on a total-evidence analysis of both traditional morphological characters and new molecular characters from three gene regions ( COI , EF-1α and wingless ). All four data partitions show substantial hidden support for the deeper nodes, which emerges only in a combined analysis in which the addition of morphological data plays a crucial role. With the exception of Nymphalidae, the traditionally recognized families are found to be strongly supported monophyletic clades with the following relationships: (Hesperiidae+(Papilionidae+(Pieridae+(Nymphalidae+(Lycaenidae+Riodinidae))))). Nymphalidae is recovered as a monophyletic clade but this clade does not have strong support. Lycaenidae and Riodinidae are sister groups with strong support and we suggest that the latter be given family rank. The position of Pieridae as the sister taxon to nymphalids, lycaenids and riodinids is supported by morphology and the EF-1α data but conflicted by the COI and wingless data. Hedylidae are more likely to be related to butterflies and skippers than geometrid moths and appear to be the sister group to Papilionoidea+Hesperioidea.


2002 ◽  
Vol 33 (3) ◽  
pp. 325-336 ◽  
Author(s):  
Richard Baker ◽  
Rudolf Meier

AbstractThe results of a cladistic analysis based on a combined character matrix consisting of the morphological data set of Meier & Hilger (2000) and the molecular data set of Baker & al. (2001) is presented. The data set is subjected to an extensive sensitivity analysis and equal character weighting is found to perform best according to character incongruence and tree support. The sensitivity analysis also reveals a remarkable stability of the preferred tree with 25 of the 36 tree nodes supported under 16 different analysis conditions. Cyrtodiopsis is synonymized with Teleopsis and Shillito's (1971) synonymization of Trichodiopsis and Chaetodiopsis with Diasemopsis is confirmed. Morphological and DNA sequence data agree on all major clades and conflict is restricted to the placement of two species within their respective genera. Only in one case can the conflict be confidently resolved. Partitioned Bremer Support values reveal that 90% of the tree support is generated by the DNA sequence characters, although the average morphological character contributes twice the support of an average molecular character. The evolution of eye-stalk morphology and of a meiotic drive chromosome system in Teleopsis is briefly discussed in the light of the phylogenetic tree.


Zootaxa ◽  
2010 ◽  
Vol 2665 (1) ◽  
pp. 51 ◽  
Author(s):  
ELENA K. KUPRIYANOVA ◽  
EIJIROH NISHI

A collection of Serpulidae (Annelida, Polychaeta) from the Patton-Murray Seamounts, Gulf of Alaska, USA contained three species Apomatus voightae n. sp., Bathyvermilia eliasoni n. comb., and Hyalopomatus biformis (Hartman, 1960). Apomatus voightae n. sp. differed from all other Apomatus spp. and from all known serpulid species by very unusual flat and ribbon-like branchial radioles as well by details of chaetal structure. Vermiliopsis eliasoni Zibrowius (1970) previously known from Atlantic and Mediterranean, was transferred to the genus Bathyvermilia Zibrowius, 1973. Hyalopomatus biformis is a deep-sea species distributed in the north-eastern Pacific from Alaska to California, USA. All serpulids were described in detail and their chaetal structure elucidated with the help of scanning electron microscopy. Molecular sequence data (18S rDNA) were aligned to a recently published serpulid data set and maximum parsimony analysis was performed to examine the phylogenetic position of the species and confirm their identification. Hyalopomatus biformis formed a sister group with Laminatubus alvini, Apomatus voightae n. sp. formed a sister group with Apomatus globifer, and Bathyvermilia eliasoni formed a weakly supported polytomy with Chitinopoma serrula, Protula tubularia and Apomatus spp. We briefly discussed biogeographic affinities of the serpulids from the PattonMurray Seamounts in the light of seamount ecology and biogeography.


2013 ◽  
Vol 45 (4) ◽  
pp. 553-564 ◽  
Author(s):  
Steven D. LEAVITT ◽  
Theodore L. ESSLINGER ◽  
Matthew P. NELSEN ◽  
H. Thorsten LUMBSCH

AbstractThe new species Oropogon evernicus Essl. & S. Leavitt and O. protocetraricus S. Leavitt & Essl. are described from montane regions of Central America, further increasing the diversity of this genus in the New World. Oropogon evernicus is separated from O. americanus by the presence of medullary tissue directly beneath the pseudocyphellae, while O. protocetraricus is separated from O. caespitosus by the presence of protocetraric acid. The segregation of both species is confirmed by molecular sequence data (nuclear ITS, nuLSU, and β-tubulin). Both species appear to have split from their most recent common ancestor during the Miocene, supporting Miocene-dominated diversification of neotropical Oropogon species found in Central America.


Sign in / Sign up

Export Citation Format

Share Document