scholarly journals Dietary protein, exercise, ageing and physical inactivity: interactive influences on skeletal muscle proteostasis

Author(s):  
Colleen S. Deane ◽  
Isabel A. Ely ◽  
Daniel J. Wilkinson ◽  
Kenneth Smith ◽  
Bethan E. Phillips ◽  
...  

Dietary protein is a pre-requisite for the maintenance of skeletal muscle mass; stimulating increases in muscle protein synthesis (MPS), via essential amino acids (EAA), and attenuating muscle protein breakdown, via insulin. Muscles are receptive to the anabolic effects of dietary protein, and in particular the EAA leucine, for only a short period (i.e. about 2–3 h) in the rested state. Thereafter, MPS exhibits tachyphylaxis despite continued EAA availability and sustained mechanistic target of rapamycin complex 1 signalling. Other notable characteristics of this ‘muscle full’ phenomenon include: (i) it cannot be overcome by proximal intake of additional nutrient signals/substrates regulating MPS; meaning a refractory period exists before a next stimulation is possible, (ii) it is refractory to pharmacological/nutraceutical enhancement of muscle blood flow and thus is not induced by muscle hypo-perfusion, (iii) it manifests independently of whether protein intake occurs in a bolus or intermittent feeding pattern, and (iv) it does not appear to be dependent on protein dose per se. Instead, the main factor associated with altering muscle full is physical activity. For instance, when coupled to protein intake, resistance exercise delays the muscle full set-point to permit additional use of available EAA for MPS to promote muscle remodelling/growth. In contrast, ageing is associated with blunted MPS responses to protein/exercise (anabolic resistance), while physical inactivity (e.g. immobilisation) induces a premature muscle full, promoting muscle atrophy. It is crucial that in catabolic scenarios, anabolic strategies are sought to mitigate muscle decline. This review highlights regulatory protein turnover interactions by dietary protein, exercise, ageing and physical inactivity.

2005 ◽  
Vol 289 (4) ◽  
pp. E678-E683 ◽  
Author(s):  
Douglas R. Bolster ◽  
Matthew A. Pikosky ◽  
P. Courtney Gaine ◽  
William Martin ◽  
Robert R. Wolfe ◽  
...  

This investigation evaluated the physiological impact of different dietary protein intakes on skeletal muscle protein synthesis postexercise in endurance runners. Five endurance-trained, male runners participated in a randomized, crossover design diet intervention, where they consumed either a low (0.8 g/kg; LP)-, moderate (1.8 g/kg; MP)-, or high (3.6 g/kg; HP)-protein diet for 4 wk. Diets were designed to be eucaloric with carbohydrate, fat, and protein approximating 60, 30, and 10%; 55, 30, and 15%; and 40, 30, and 30% for LP, MP, and HP, respectively. Substrate oxidation was assessed via indirect calorimetry at 3 wk of the dietary interventions. Mixed-muscle protein fractional synthetic rate (FSR) was measured after an endurance run (75 min at 70% V̇o2 peak) using a primed, continuous infusion of [2H5]phenylalanine. Protein oxidation increased with increasing protein intake, with each trial being significantly different from the other ( P < 0.01). FSR after exercise was significantly greater for LP (0.083%/h) and MP (0.078%/h) than for HP (0.052%/h; P < 0.05). There was no difference in FSR between LP and MP. This is the first investigation to establish that habitual dietary protein intake in humans modulates skeletal muscle protein synthesis after an endurance exercise bout. Future studies directed at mechanisms by which level of protein intake influences skeletal muscle turnover are needed.


2020 ◽  
Vol 318 (3) ◽  
pp. E417-E429 ◽  
Author(s):  
Kostas Tsintzas ◽  
Robert Jones ◽  
Pardeep Pabla ◽  
Joanne Mallinson ◽  
David A. Barrett ◽  
...  

Muscle anabolic resistance to dietary protein is associated with obesity and insulin resistance. However, the contribution of excess consumption of fat to anabolic resistance is not well studied. The aim of these studies was to test the hypothesis that acute and short-term dietary fat overload will impair the skeletal muscle protein synthetic response to dietary protein ingestion. Eight overweight/obese men [46.4 ± 1.4 yr, body mass index (BMI) 32.3 ± 5.4 kg/m2] participated in the acute feeding study, which consisted of two randomized crossover trials. On each occasion, subjects ingested an oral meal (with and without fat emulsion), 4 h before the coingestion of milk protein, intrinsically labeled with [1-13C]phenylalanine, and dextrose. Nine overweight/obese men (44.0 ± 1.7 yr, BMI 30.1 ± 1.1 kg/m2) participated in the chronic study, which consisted of a baseline, 1-wk isocaloric diet, followed by a 2-wk high-fat diet (+25% energy excess). Acutely, incorporation of dietary amino acids into the skeletal muscle was twofold higher ( P < 0.05) in the lipid trial compared with control. There was no effect of prior lipid ingestion on indices of insulin sensitivity (muscle glucose uptake, pyruvate dehydrogenase complex activity, and Akt phosphorylation) in response to the protein/dextrose drink. Fat overfeeding had no effect on muscle protein synthesis or glucose disposal in response to whey protein ingestion, despite increased muscle diacylglycerol C16:0 ( P = 0.06) and ceramide C16:0 ( P < 0.01) levels. Neither acute nor short-term dietary fat overload has a detrimental effect on the skeletal muscle protein synthetic response to dietary protein ingestion in overweight/obese men, suggesting that dietary-induced accumulation of intramuscular lipids per se is not associated with anabolic resistance.


2021 ◽  
Vol 8 ◽  
Author(s):  
Elena de Marco Castro ◽  
Caoileann H. Murphy ◽  
Helen M. Roche

Sarcopenia is characterised by the presence of diminished skeletal muscle mass and strength. It is relatively common in older adults as ageing is associated with anabolic resistance (a blunted muscle protein synthesis response to dietary protein consumption and resistance exercise). Therefore, interventions to counteract anabolic resistance may benefit sarcopenia prevention and are of utmost importance in the present ageing population. There is growing speculation that the gut microbiota may contribute to sarcopenia, as ageing is also associated with [1) dysbiosis, whereby the gut microbiota becomes less diverse, lacking in healthy butyrate-producing microorganisms and higher in pathogenic bacteria, and [2) loss of epithelial tight junction integrity in the lining of the gut, leading to increased gut permeability and higher metabolic endotoxemia. Animal data suggest that both elements may impact muscle physiology, but human data corroborating the causality of the association between gut microbiota and muscle mass and strength are lacking. Mechanisms wherein the gut microbiota may alter anabolic resistance include an attenuation of gut-derived low-grade inflammation and/or the increased digestibility of protein-containing foods and consequent higher aminoacidemia, both in favour of muscle protein synthesis. This review focuses on the putative links between the gut microbiota and skeletal muscle in the context of sarcopenia. We also address the issue of plant protein digestibility because plant proteins are increasingly important from an environmental sustainability perspective, yet they are less efficient at stimulating muscle protein synthesis than animal proteins.


Author(s):  
Mary Ni Lochlainn ◽  
Ruth C. E. Bowyer ◽  
Claire J. Steves

Muscle mass, strength and physical function are known to decline with age. This is associated with the development of geriatric syndromes including sarcopenia and frailty. These conditions are associated with disability, falls, longer hospital stay, higher readmission rates, institutionalisation, osteoporosis, and death. Moreover, they are associated with reduced quality of life, as well as substantial costs to health services around the world. Dietary protein is essential for skeletal muscle function. Older adults have shown evidence of anabolic resistance, where greater amounts of protein are required to stimulate muscle protein synthesis and therefore require higher daily amounts of dietary protein. Research shows that resistance exercise has the most beneficial effect on preserving skeletal muscle. A synergistic effect has been noted when this is combined with dietary protein, yet studies in this area lack consistency. This is due, in part, to the variation that exists within dietary protein, in terms of dose, quality, source, amino acid composition and timing. Research has targeted participants that are replete in dietary protein with negative results. Inconsistent measures of muscle mass, muscle function, physical activity and diet are used. This review attempts to summarise these issues, as well as introduce the possible role of the gut microbiome and its metabolome in this area.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1441 ◽  
Author(s):  
Joshua L. Hudson ◽  
Robert E. Bergia ◽  
Wayne W. Campbell

There is a shift in thinking about dietary protein requirements from daily requirements to individual meal requirements. Per meal, stimulation of muscle protein synthesis has a saturable dose relationship with the quantity of dietary protein consumed. Protein intake above the saturable dose does not further contribute to the synthetic response; the “excess” amino acids are predominantly oxidized. Given that daily dietary protein intake is finite, finding protein distribution patterns that both reduce amino acid oxidation and maximize their contribution towards protein synthesis (in theory improving net balance) could be “optimal” and is of practical scientific interest to promote beneficial changes in skeletal muscle-related outcomes. This article reviews both observational and randomized controlled trial research on the protein distribution concept. The current evidence on the efficacy of consuming an “optimal” protein distribution to favorably influence skeletal muscle-related changes is limited and inconsistent. The effect of protein distribution cannot be sufficiently disentangled from the effect of protein quantity. Consuming a more balanced protein distribution may be a practical way for adults with marginal or inadequate protein intakes (<0.80 g·kg−1·d−1) to achieve a moderately higher total protein intake. However, for adults already consuming 0.8–1.3 g·kg−1·d−1, the preponderance of evidence supports that consuming at least one meal that contains sufficient protein quantity to maximally stimulate muscle protein synthesis, independent of daily distribution, is helpful to promote skeletal muscle health.


Author(s):  
Yan Zhao ◽  
Jason Cholewa ◽  
Huayu Shang ◽  
Yueqin Yang ◽  
Xiaomin Ding ◽  
...  

Skeletal muscle anabolic resistance (i.e., the decrease in muscle protein synthesis (MPS) in response to anabolic stimuli such as amino acids and exercise) has been identified as a major cause of age-related sarcopenia, to which blunted nutrition-sensing contributes. In recent years, it has been suggested that a leucine sensor may function as a rate-limiting factor in skeletal MPS via small-molecule GTPase. Leucine-sensing and response may therefore have important therapeutic potential in the steady regulation of protein metabolism in aging skeletal muscle. This paper systematically summarizes the three critical processes involved in the leucine-sensing and response process: (1) How the coincidence detector mammalian target of rapamycin complex 1 localizes on the surface of lysosome and how its crucial upstream regulators Rheb and RagB/RagD interact to modulate the leucine response; (2) how complexes such as Ragulator, GATOR, FLCN, and TSC control the nucleotide loading state of Rheb and RagB/RagD to modulate their functional activity; and (3) how the identified leucine sensor leucyl-tRNA synthetase (LARS) and stress response protein 2 (Sestrin2) participate in the leucine-sensing process and the activation of RagB/RagD. Finally, we discuss the potential mechanistic role of exercise and its interactions with leucine-sensing and anabolic responses.


Author(s):  
Nina Zeng ◽  
Randall F. D'Souza ◽  
Caitlin L. Macrae ◽  
Vandre C. Figueiredo ◽  
Chantal A. Pileggi ◽  
...  

Disuse-induced muscle atrophy is accompanied by a blunted postprandial response of the mammalian target of rapamycin complex 1 (mTORC1) pathway. Conflicting observations exist as to whether postabsorptive mTORC1 pathway activation is also blunted by disuse and plays a role in atrophy. It is unknown whether changes in habitual protein intake alters mTORC1 regulatory proteins and how they may contribute to the development of anabolic resistance. The primary objective of this study was to characterize the downstream responsiveness of skeletal muscle mTORC1 activation and its upstream regulatory factors, following 14 days of lower limb disuse in middle-aged men (45-60 years). The participants were further randomized to receive daily supplementation of 20g/d of protein (n=12; milk protein concentrate) or isocaloric carbohydrate placebo (n=13). Immobilization reduced postabsorptive skeletal muscle phosphorylation of the mTORC1 downstream targets, 4E-BP1, P70S6K and ribosomal protein S6 (RPS6), with phosphorylation of the latter two decreasing to a greater extent in the placebo, compared to the protein supplementation groups (37 ± 13 vs 14 ± 11% and 38 ± 20 vs 25 ± 8% respectively). Sestrin2 protein was also downregulated following immobilization irrespective of supplement group, despite a corresponding increase in its mRNA content. This decrease in Sestrin2 protein was negatively correlated with the immobilization induced change in the in-silico predicted regulator miR-23b-3p. No other measured upstream proteins were altered by immobilization or supplementation. Immobilization downregulated postabsorptive mTORC1 pathway activation and 20g/day of protein supplementation attenuated the decrease in phosphorylation of targets regulating muscle protein synthesis.


2014 ◽  
Vol 39 (9) ◽  
pp. 987-997 ◽  
Author(s):  
Daniel R. Moore ◽  
Donny M. Camera ◽  
Jose L. Areta ◽  
John A. Hawley

Recovery from the demands of daily training is an essential element of a scientifically based periodized program whose twin goals are to maximize training adaptation and enhance performance. Prolonged endurance training sessions induce substantial metabolic perturbations in skeletal muscle, including the depletion of endogenous fuels and damage/disruption to muscle and body proteins. Therefore, increasing nutrient availability (i.e., carbohydrate and protein) in the post-training recovery period is important to replenish substrate stores and facilitate repair and remodelling of skeletal muscle. It is well accepted that protein ingestion following resistance-based exercise increases rates of skeletal muscle protein synthesis and potentiates gains in muscle mass and strength. To date, however, little attention has focused on the ability of dietary protein to enhance skeletal muscle remodelling and stimulate adaptations that promote an endurance phenotype. The purpose of this review is to critically discuss the results of recent studies that have examined the role of dietary protein for the endurance athlete. Our primary aim is to consider the results from contemporary investigations that have advanced our knowledge of how the manipulation of dietary protein (i.e., amount, type, and timing of ingestion) can facilitate muscle remodelling by promoting muscle protein synthesis. We focus on the role of protein in facilitating optimal recovery from, and promoting adaptations to strenuous endurance-based training.


Sign in / Sign up

Export Citation Format

Share Document