Nocturnal hatching in the monogenean skin parasiteEntobdella hippoglossifrom the halibut,Hippoglossus hippoglossus

Parasitology ◽  
1974 ◽  
Vol 68 (2) ◽  
pp. 161-172 ◽  
Author(s):  
Graham C. Kearn

When eggs of the monogenean parasiteEntobdella hippoglossi, from the skin of the halibut (Hippoglossus hippoglossus), are incubated at 7 °C in alternating 12 h periods of dim blue light (intensity about 3 nW/cm2) and darkness, free-swimming larvae are recovered mostly at the end of the first 2 h of the period of darkness. Larvae do not emerge in significant numbers when the eggs are mechanically disturbed during the light or dark periods, or when the eggs are placed in shadow for periods of 5–25 min during the illumination period. The treatment of fully developed eggs with washings from halibut or from sole or with halibut skin mucus failed to produce hatching.The free-swimming life of the larvae at 7 °C is in excess of 24 h and within 4 h of hatching at 4 °C some larvae are able to attach themselves to halibut skin and shed their ciliated epidermal cells.The relationship between the hatching pattern of the eggs of the parasite and the behaviour of the halibut is discussed.

Parasitology ◽  
1974 ◽  
Vol 68 (2) ◽  
pp. 173-188 ◽  
Author(s):  
Graham C. Kearn

Previously it has been shown that eggs of the skin-parasitic monogenean Entobdella soleae, maintained free of host contamination at constant temperature (12 °C) and exposed to alternating 12 h periods of light and darkness, hatch during the first few hours of each period of illumination as a result of endogenous processes in the larva in conjunction with the illumination cycle. Washings, prepared by immersing the parasite's host (the common sole, Solea solea) for 1 h in seawater (just sufficient to cover the body), enhance this ‘morning’ hatching. Furthermore, the application of host washings during the latter half of the period of illumination or during the dark period also stimulates hatching. Experiments have shown that the hatching factor is present in sole skin mucus, is not destroyed by boiling for 5 min or by freezing and is produced by small soles measuring 4–5 cm in length as well as by larger soles (15–21 cm long).When eggs are incubated at about 12°C in the absence of fish washings, hatching begins about 30 days after laying, but there is evidence that some of the larvae inside their shells are fully developed and capable of hatching in response to host hatching factor 1–3 days earlier.When fish washings are added to eggs which range in age from 25 to more than 30 days (at 12 °C) many eggs are stimulated to hatch (in addition to ‘morning’ hatching as a result of endogenous rhythmical processes and the illumination cycle) and others fail to hatch. These remaining unhatched eggs, in the absence of further treatment with host hatching factor, will complete their development and subsequently will hatch during the ‘morning’ hours in response to the illumination cycle. Further contact with host hatching factor is likely to stimulate the hatching of some of these remaining eggs.The host hatching factor is not specific to S. solea; washings from plaice, dab, halibut, whiting and ray induce hatching in E. soleae. In experiments in which oncomiracidia were offered scales from dab and sole, most of the attached larvae were found on sole skin, irrespective of whether the hatching stimulant had been provided by dab or by sole.The relationship between the behaviour of the common sole and hatching phenomena in the skin parasite is discussed; hatching rhythms and the use of host hatching factors adapt the parasite to take advantage of most opportunities to infect the host.


1956 ◽  
Vol 33 (3) ◽  
pp. 461-477
Author(s):  
R. B. CLARK

1. The photoreceptors found in the Nephtyidae are: (a) Two pairs of vacuolated cells lying in pigment cups, with accessory cells, embedded in the posterior part of the supra-oesophageal ganglion. (b) One or two cells, which may or may not be vacuolated, on either side, lying a little anterior to the ganglion. (c) Undifferentiated epidermal cells surrounded by pigment granules may be photosensitive. 2. There are both morphological and behavioural grounds for concluding that the prostomial eyes of Nephtys are homologous with the eyes of Nereis, and that they are involved in the same types of behaviour. 3. The frequency with which Nephtys swims is, within limits, a linear function of the light intensity. Although the ganglionic eyes are directional receptors the worm does not orientate itself in a light beam; presumably the light reaching them is too diffuse. In the very small species N. cornuta, the eyes are close to the surface of the brain and the worm does orientate itself in a light beam. 4. Swimming is an essential prelude to burrowing, and the brighter the light the more frequently the worm swims and the sooner it is buried. Activity in light can be inhibited by stimulating receptors on the dorsal surface of the animal by contact.


2017 ◽  
pp. 21 ◽  
Author(s):  
Javier Carmona-Jiménez ◽  
Gustavo Montejano-Zurita

The results of a phycofloristic study on three springs in the Huasteca Potosina region are presented; 67 species are reported. Floristic similarities and differences among the springsare analized, as well as the relationship between species and environmental factors. Microhabitas were defined in the springs as well as the principal algal asociations that characterize them. Light intensity and current velocity are the most important factors affecting the predominant growth forms present in this type of habitat.


1969 ◽  
Vol 22 (1) ◽  
pp. 53 ◽  
Author(s):  
D Aspinall

The acceleration of flowering in barley due to the inclusion of incandescent illumination in the light source has been shown to be due to the far�red content of the light. A linear relationship between floral development and intensity of far�red light in a 16�hr photoperiod has been established with the cultivar CI5611. Barley appears to be relatively unresponsive to blue light, however.


Weed Science ◽  
1993 ◽  
Vol 41 (4) ◽  
pp. 534-540 ◽  
Author(s):  
Ronald E. Jones ◽  
Robert H. Walker

Greenhouse and growth chamber experiments with potted plants were conducted to determine the effects of interspecific root and canopy interference, light intensity, and soil moisture on water uptake and biomass of soybean, common cocklebur, and sicklepod. Canopy interference and canopy plus root interference of soybean with common cocklebur increased soybean water uptake per plant and per unit leaf area. Root interference with soybean decreased common cocklebur water uptake per plant. Canopy interference of soybean with sicklepod increased soybean water uptake per unit leaf area, while root interference decreased uptake per plant. Combined root and canopy interference with soybean decreased water uptake per plant for sicklepod. Soybean leaf area and shoot weight were reduced by root interference with both weeds. Common cocklebur and sicklepod leaf area and shoot weight were reduced by root and canopy interference with soybeans. Only common cocklebur root weight decreased when canopies interfered and roots did not. The relationship between light intensity and water uptake per unit leaf area was linear in both years with water uptake proportional to light intensity. In 1991 water uptake response to tight was greater for common cocklebur than for sicklepod. The relationship between soil moisture level and water uptake was logarithmic. Common cocklebur water uptake was two times that of soybean or sicklepod at −2 kPa of pressure potential. In 1991 common cocklebur water uptake decreased at a greater rate than soybean or sicklepod in response to pressure potential changes from −2 to −100 kPa.


2020 ◽  
Vol 112 (2) ◽  
pp. 1466-1470 ◽  
Author(s):  
James Eaves ◽  
Stephen Eaves ◽  
Chad Morphy ◽  
Chris Murray

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1819 ◽  
Author(s):  
Jui-Teng Lin ◽  
Da-Chuan Cheng ◽  
Kuo-Ti Chen ◽  
Hsia-Wei Liu

The kinetics and modeling of dual-wavelength (UV and blue) controlled photopolymerization confinement (PC) are presented and measured data are analyzed by analytic formulas and numerical data. The UV-light initiated inhibition effect is strongly monomer-dependent due to different C=C bond rate constants and conversion efficacies. Without the UV-light, for a given blue-light intensity, higher initiator concentration (C10) and rate constant (k’) lead to higher conversion, as also predicted by analytic formulas, in which the total conversion rate (RT) is an increasing function of C1 and k’R, which is proportional to k’[gB1C1]0.5. However, the coupling factor B1 plays a different role that higher B1 leads to higher conversion only in the transient regime; whereas higher B1 leads to lower steady-state conversion. For a fixed initiator concentration C10, higher inhibitor concentration (C20) leads to lower conversion due to a stronger inhibition effect. However, same conversion reduction was found for the same H-factor defined by H0 = [b1C10 − b2C20]. Conversion of blue-only are much higher than that of UV-only and UV-blue combined, in which high C20 results a strong reduction of blue-only-conversion, such that the UV-light serves as the turn-off (trigger) mechanism for the purpose of spatial confirmation within the overlap area of UV and blue light. For example, UV-light controlled methacrylate conversion of a glycidyl dimethacrylate resin is formulated with a tertiary amine co-initiator, and butyl nitrite. The system is subject to a continuous exposure of a blue light, but an on-off exposure of a UV-light. Finally, we developed a theoretical new finding for the criterion of a good material/candidate governed by a double ratio of light-intensity and concentration, [I20C20]/[I10C10].


Author(s):  
Laleen Jayamanne

The strange, inexplicable movement of light and colour of the image is examined in relationship to Nicole Kidman’s unique form of acting in this film. Kidman acts in slow motion. The dynamism of colour and Kidman’s slowed-down speech acts are explored to show how, together, they transform the relationship between the heterosexual married fictional couple Alice and Bill, played by the real-life couple Kidman and Cruise. Kubrick taps into and draws out Kidman’s metamorphic powers as an actor. The industrial, technical, and aesthetic context is Kubrick’s experiments with light and colour on celluloid, at the moment of its obsolescence.


Forests ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Yue Wen ◽  
Shuchai Su ◽  
Haicheng Zhang

There are considerable differences in chestnut yield and quality across different chestnut-producing regions in China, indicating that environmental factors affect these properties of chestnuts. Furthermore, nut yield and quality differ depending on canopy position. Therefore, this study investigated the relationship between the canopy microclimate, nut yield, and quality. We determined microclimate factors from blossoming to ripening at different positions in the canopy. Nut yield and quality and the number of different branch types were measured at various canopy positions. The light intensity and temperature of the different canopy layers exhibited funnel-form distributions ranging from 0 to 3600 μmol·m2·s−1 and from 32 to 37 °C, respectively. Canopy humidity showed an inverted funnel-shaped distribution ranging from 26% to 40%. Nut yield and quality in the top and outer canopies were higher than in the bottom and inner canopies. Branches in the top-middle and peripheral parts of the canopy also produced higher yields, especially strong branches that bore more nuts. Nut yield and quality had positive correlations with light intensity (r = 0.735) and temperature (r = 0.709), whereas they were inversely associated with humidity (r = −0.584). The nut yield was more than 200 gm−3 when the light intensity was above 1500 μmol·m2·s−1, the temperature was above 34.4 °C, and the humidity was below 27.5%.


Sign in / Sign up

Export Citation Format

Share Document