Science, Philosophy and Religion

Philosophy ◽  
1934 ◽  
Vol 9 (34) ◽  
pp. 146-156
Author(s):  
W. R. Inge

The subject which has been chosen for me is sufficiently comprehensive. Several years ago I wrote the last of a series of essays in a book calledScience, Religion, and Reality, in which, as requested, I tried to sum up the contributions of the other writers, with reflections of my own. I have also given a short statement of my opinions in the first volume of that interesting book,Contemporary British Philosophy. Lastly, I have tried, in a book published in the autumn of 1933, to consider the religious and philosophical implications of recent scientific theories and discoveries, and particularly of the conviction held by our leading astronomers and mathematicians that the Second Law of Thermodynamics is unassailable, so that the ultimate extinction of the universe as we know it is certain. I showed that the acceptance of this verdict raises important questions for the philosopher and theologian.

Author(s):  
Theodore M. Porter

This chapter explores how German economists and statisticians of the historical school viewed the idea of social or statistical law as the product of confusion between spirit and matter or, equivalently, between history and nature. That the laws of Newtonian mechanics are fully time-symmetric and hence can be equally run backwards or forwards could not easily be reconciled with the commonplace observation that heat always flows from warmer to cooler bodies. James Clerk Maxwell, responding to the apparent threat to the doctrine of free will posed by thermodynamics and statistics, pointed out that the second law of thermodynamics was only probable, and that heat could be made to flow from a cold body to a warm one by a being sufficiently quick and perceptive. Ludwig Boltzmann resisted this incursion of probabilism into physics but in the end he was obliged, largely as a result of difficulties presented by the issue of mechanical reversibility, to admit at least the theoretical possibility of chance effects in thermodynamics. Meanwhile, the American philosopher and physicist C. S. Pierce determined that progress—the production of heterogeneity and homogeneity—could never flow from rigid mechanical laws, but demanded the existence of objective chance throughout the universe.


Author(s):  
Barry K. Carpenter

In 1997, Ross Kelly and his coworkers at Boston College reported their results from an experiment with an intriguing premise (Kelly et al., 1997; see also Kelly et al., 1998). They had synthesized the molecule shown in figure 12.1. It was designed to be a “molecular ratchet,” so named because it appeared that it should undergo internal rotation about the A—B bond more readily in one direction than the other. The reason for thinking this might occur was that the benzophenanthrene moiety—the “pawl” of the ratchet—was anticipated to be helical. Thus, in some sense, this might be an inverse ratchet where the asymmetry dictating the sense of rotation would reside in the pawl rather than in the “teeth” on the “wheel” (the triptycene unit) as it does in a normal mechanical ratchet. Kelly and coworkers designed an elegant experiment to determine whether their molecular ratchet was functioning as anticipated, and they were (presumably) disappointed to find that it was not—internal rotation about the A—B bond occurred at equal rates in each direction. In 1998 Davis pointed out that occurrence of the desired behavior of the molecular ratchet would have constituted a violation of the second law of thermodynamics (Davis, 1998). With hindsight, I think most chemists would agree that Davis’s critique is unassailable, although the appeal of the mechanical analogy was so strong that I imagine those same chemists would also understand if Kelly et al. had overlooked the thermodynamic consequences of their proposal in the original design of the experiment. But now comes the interesting question: Suppose Kelly et al. had been fully aware that their experiment, if successful, would undermine the second law of thermodynamics, should they have conducted it anyway? Davis, in his critique writes: . . .Some would argue that this experiment was misconceived. To challenge the Second Law may be seen as scientific heresy (a nice irony, considering the Jesuit origins of Boston College), and the theoretical arguments against molecular ratchets and trapdoors are well developed. . . .


1968 ◽  
Vol 1 (2) ◽  
pp. 127-175 ◽  
Author(s):  
A. Katchalsky ◽  
R. Spangler

I. I. In his illuminating book onThe Nature of Thermodynamics, Bridgeman (1941) points out an intrinsic contradiction between the concepts of physical and biological evolution. In his words: ‘The view that the universe is running down into a condition where its entropy and the amount of disorder are as great as possible has had a profound effect on the views of many biologists on the nature of biological phenomena. It springs to the eye, however, that the tendency of living organisms is to organize their surroundings—that is to “produce” order where formerly there was disorder. Life then appears in some way to oppose the otherwise universal drive to disorder. Does it mean that living organisms do, or may violate the second law of thermodynamics?…’


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Saugata Mitra ◽  
Subhajit Saha ◽  
Subenoy Chakraborty

A study of Universal thermodynamics is done in the framework of RSII brane model and DGP brane scenario. The Universe is chosen as FRW model bounded by apparent or event horizon. Assuming extended Hawking temperature on the horizon, the unified first law is examined for perfect fluid (with constant equation of state) and Modified Chaplygin Gas model. As a result there is a modification of Bekenstein entropy on the horizons. Further the validity of the generalized second law of thermodynamics and thermodynamical equilibrium are also investigated.


2010 ◽  
Vol 19 (07) ◽  
pp. 1205-1215 ◽  
Author(s):  
M. R. SETARE ◽  
A. SHEYKHI

We examine the validity of the generalized second law of thermodynamics in a non-flat universe in the presence of viscous dark energy. First we assume that the universe is filled only with viscous dark energy. Then, we extend our study to the case where there is an interaction between viscous dark energy and pressureless dark matter. We examine the time evolution of the total entropy, including the entropy associated with the apparent horizon and the entropy of the viscous dark energy inside the apparent horizon. Our study shows that the generalized second law of thermodynamics is always protected in a universe filled with interacting viscous dark energy and dark matter in a region enclosed by the apparent horizon. Finally, we show that the the generalized second law of thermodynamics is fulfilled for a universe filled with interacting viscous dark energy and dark matter by taking into account the Casimir effect.


1961 ◽  
Vol 28 (3) ◽  
pp. 335-338 ◽  
Author(s):  
E. D. Kennedy

The problem of the mixing of two streams of the same compressible fluid in a constant-area duct is solved by applying certain dimensionless parameters first used by Kiselev. The extension to dissimilar fluids or to more than two streams is straightforward. Although the analysis is unrestricted, detailed results are given only for the case where one stream is sonic or supersonic and the other sonic or subsonic at the origin of mixing. For this case, the second law of thermodynamics indicates that, of the two solutions of the conservation equations, the subsonic one is always permitted while some of the supersonic solutions are thermodynamically impossible. Upon examination of experimental data, it is further concluded that of the admissible supersonic solutions, only one may be expected to occur. The establishment of this supersonic solution with its relatively high stagnation pressure leads to the conclusion that when the initial temperatures are sufficiently different, there exist thermodynamically possible solutions with a stagnation pressure higher than that of either of the two initial streams.


2017 ◽  
Vol 32 (33) ◽  
pp. 1750182 ◽  
Author(s):  
Ali İhsan Keskin ◽  
Irfan Acikgoz

In this study, the validity of the generalized second law of thermodynamics (GSLT) has been investigated in F(R, G) gravity. We consider that the boundary of the universe is surrounded by an apparent horizon in the spatially flat Friedmann–Robertson–Walker (FRW) universe, and we take into account the Hawking temperature on the horizons. The unified solutions of the field equations corresponding to gravity theory have been applied to the validity of the GSLT frame, and in this way, both the solutions have been verified and all the expansion history of the universe has been shown in a unified picture.


2009 ◽  
Vol 34 (2) ◽  
pp. 131-137
Author(s):  
MOSHE PERLSTEIN

This article borrows its methodology from physics in order to analyse time in the theatre as evolution of order. Two set designs (both designed by Roni Toren for the Khan Theatre in Jerusalem) are portrayed through this perspective, representing inverse examples. In Measure for Measure, directed by Gadi Roll, the temporal evolution of space is from order to disorder, obeying the second law of thermodynamics. On the other hand, in The Seagull, directed by Ofira Henig, the evolution contradicts that law. The problem of depicting disorder on stage, the possibility of such a contradiction, the implication of the two different perceptions and their ethical values are discussed to prove the effectiveness of a methodology adopted from physics.


2019 ◽  
Author(s):  
PierGianLuca Porta Mana

The hypothetical possibility of distinguishing preparations described by non-orthogonal density matrices does not necessarily imply a violation of the second law of thermodynamics, as was instead stated by von Neumann. On the other hand, such a possibility would surely mean that the particular density-matrix space (and related Hilbert space) adopted would not be adequate to describe the hypothetical new experimental facts. These points are shown by making clear the distinction between physical preparations and the density matrices which represent them, and then comparing a "quantum" thermodynamic analysis given by Peres with a "classical" one given by Jaynes.


2018 ◽  
Vol 33 (24) ◽  
pp. 1850137 ◽  
Author(s):  
Onur Siginc ◽  
Mustafa Salti ◽  
Hilmi Yanar ◽  
Oktay Aydogdu

Assuming the universe as a thermodynamical system, the second law of thermodynamics can be extended to another form including the sum of matter and horizon entropies, which is called the generalized second law of thermodynamics. The generalized form of the second law (GSL) is universal which means it holds both in non-equilibrium and equilibrium pictures of thermodynamics. Considering the universe is bounded by a dynamical apparent horizon, we investigate the nature of entropy function for the validity of GSL in the scalar–tensor–vector (STEVE) theory of gravity.


Sign in / Sign up

Export Citation Format

Share Document