scholarly journals Navigating at night: fundamental limits on the sensitivity of radical pair magnetoreception under dim light

Author(s):  
H. G. Hiscock ◽  
T. W. Hiscock ◽  
D. R. Kattnig ◽  
T. Scrivener ◽  
A. M. Lewis ◽  
...  

Abstract Night-migratory songbirds appear to sense the direction of the Earth's magnetic field via radical pair intermediates formed photochemically in cryptochrome flavoproteins contained in photoreceptor cells in their retinas. It is an open question whether this light-dependent mechanism could be sufficiently sensitive given the low-light levels experienced by nocturnal migrants. The scarcity of available photons results in significant uncertainty in the signal generated by the magnetoreceptors distributed around the retina. Here we use results from Information Theory to obtain a lower bound estimate of the precision with which a bird could orient itself using only geomagnetic cues. Our approach bypasses the current lack of knowledge about magnetic signal transduction and processing in vivo by computing the best-case compass precision under conditions where photons are in short supply. We use this method to assess the performance of three plausible cryptochrome-derived flavin-containing radical pairs as potential magnetoreceptors.

HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 254A-254
Author(s):  
Marvin Pritts ◽  
Dorcas Isuta

Previous findings reveal that rooting and acclimatization of apple and blueberry plants is often difficult, inconsistent and inefficient. This experiment was set up in a fog chamber lo investigate the effects of CO2 enrichment (CDE) and irradiance on unrooted stage II microshoots. Two CO2 and 3 light levels tested were: 1350 +/- 150 (+ CDE), and 450 +/- 50 (- CDE) ppm; 30 +/- 5 (low), 55 + 10 (medium), and 100 + 20 (high) umolm-2s-1 respectively. Cultivars assessed were Berkeley and Northsky for blueberry. G65 and NY30 for apple. Blueberry microshoots acclimatized successfully and gave between 90 to 100% rooting and survival rate. Apple microshoots acclimatized and rooted slowly, exhibited great sensitivity to in vivo conditions and gave between 40 to 100% rooting and survival rate. High light induced photo-inhibition which disappeared after complete acclimatization. There was a significant difference between low light and the other two light levels. The effect of CDE was dependent on cultivar. In most cases, high light (-) CDE gave the most vigorous growth (highest plant dry weight and leaf area). There was a significant difference between (+) CDE and (-) CDE at low and medium light, but none at high light. Low light (-) CDE and medium light (+) CDE were superior over low light (+) CDE and medium light (-) CDE. respectively. Stalling out in apple microshoots was corrected by GA sprays.


2021 ◽  
Vol 18 (184) ◽  
Author(s):  
Siu Ying Wong ◽  
Yujing Wei ◽  
Henrik Mouritsen ◽  
Ilia A. Solov'yov ◽  
P. J. Hore

The biophysical mechanism of the magnetic compass sensor in migratory songbirds is thought to involve photo-induced radical pairs formed in cryptochrome (Cry) flavoproteins located in photoreceptor cells in the eyes. In Cry4a—the most likely of the six known avian Crys to have a magnetic sensing function—four radical pair states are formed sequentially by the stepwise transfer of an electron along a chain of four tryptophan residues to the photo-excited flavin. In purified Cry4a from the migratory European robin, the third of these flavin–tryptophan radical pairs is more magnetically sensitive than the fourth, consistent with the smaller separation of the radicals in the former. Here, we explore the idea that these two radical pair states of Cry4a could exist in rapid dynamic equilibrium such that the key magnetic and kinetic properties are weighted averages. Spin dynamics simulations suggest that the third radical pair is largely responsible for magnetic sensing while the fourth may be better placed to initiate magnetic signalling particularly if the terminal tryptophan radical can be reduced by a nearby tyrosine. Such an arrangement could have allowed independent optimization of the essential sensing and signalling functions of the protein. It might also rationalize why avian Cry4a has four tryptophans while Crys from plants have only three.


Author(s):  
Bo Leberecht ◽  
Dmitry Kobylkov ◽  
Thiemo Karwinkel ◽  
Sara Döge ◽  
Lars Burnus ◽  
...  

AbstractThe light-dependent magnetic compass sense of night-migratory songbirds can be disrupted by weak radiofrequency fields. This finding supports a quantum mechanical, radical-pair-based mechanism of magnetoreception as observed for isolated cryptochrome 4, a protein found in birds’ retinas. The exact identity of the magnetically sensitive radicals in cryptochrome is uncertain in vivo, but their formation seems to require a bound flavin adenine dinucleotide chromophore and a chain of four tryptophan residues within the protein. Resulting from the hyperfine interactions of nuclear spins with the unpaired electrons, the sensitivity of the radicals to radiofrequency magnetic fields depends strongly on the number of magnetic nuclei (hydrogen and nitrogen atoms) they contain. Quantum-chemical calculations suggested that electromagnetic noise in the frequency range 75–85 MHz could give information about the identity of the radicals involved. Here, we show that broadband 75–85 MHz radiofrequency fields prevent a night-migratory songbird from using its magnetic compass in behavioural experiments. These results indicate that at least one of the components of the radical pair involved in the sensory process of avian magnetoreception must contain a substantial number of strong hyperfine interactions as would be the case if a flavin–tryptophan radical pair were the magnetic sensor.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 385
Author(s):  
Lena Hunt ◽  
Karel Klem ◽  
Zuzana Lhotáková ◽  
Stanislav Vosolsobě ◽  
Michal Oravec ◽  
...  

Barley (Hordeum vulgare) accumulates phenolic compounds (PhCs), which play a key role in plant defense against environmental stressors as antioxidants or UV screening compounds. The influence of light and atmospheric CO2 concentration ([CO2]) on the accumulation and localization of PhCs in barley leaves was examined for two varieties with different tolerances to oxidative stress. PhC localization was visualized in vivo using fluorescence microscopy. Close relationships were found between fluorescence-determined localization of PhCs in barley leaves and PhC content estimated using liquid chromatography coupled with mass spectroscopy detection. Light intensity had the strongest effect on the accumulation of PhCs, but the total PhC content was similar at elevated [CO2], minimizing the differences between high and low light. PhCs localized preferentially near the surfaces of leaves, but under low light, an increasing allocation of PhCs in deeper mesophyll layers was observed. The PhC profile was significantly different between barley varieties. The relatively tolerant variety accumulated significantly more hydroxycinnamic acids, indicating that these PhCs may play a more prominent role in oxidative stress prevention. Our research presents novel evidence that [CO2] modulates the accumulation of PhCs in barley leaves. Mesophyll cells, rather than epidermal cells, were most responsive to environmental stimuli in terms of PhC accumulation.


1997 ◽  
Vol 75 (9) ◽  
pp. 1424-1435 ◽  
Author(s):  
D. Mailly ◽  
J. P. Kimmins

Silvicultural alternatives that differ in the degree of overstory removal may create shady environments that will be problematic for the regeneration of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Gradients of light in the field were used to compare mortality, growth, and leaf morphological acclimation of two conifer species of contrasting shade tolerances: Douglas-fir and western hemlock (Tsuga heterophylla (Raf.) Sarg.). Results after two growing seasons indicated that Douglas-fir mortality occurred mainly at relative light intensity (RLI) below 20%, while western hemlock mortality was evenly distributed along the light gradient. Height, diameter, and biomass of the planted seedlings increased with increasing light for both species but at different rates, and maximum biomass accumulation always occurred in the open. Douglas-fir allocated more resources to stem biomass than western hemlock, which accumulated more foliage biomass. Increases in specific leaf area for Douglas-fir seedlings occurred at RLI ≤ 0.4 and red/far red (R/FR) ratio ≤ 0.6, which appear to be the minimal optimum light levels for growth. Conversely, western hemlock seedlings adjusted their leaf morphology in a more regular pattern, and changes were less pronounced at low light levels. These results, along with early mortality results for Douglas-fir, suggest that the most successful way to artificially regenerate this species may be by allowing at least 20% of RLI for ensuring survival and at least 40% RLI for optimum growth. Key words: light, light quality, leaf morphology, acclimation.


1987 ◽  
Vol 44 (12) ◽  
pp. 2144-2154 ◽  
Author(s):  
M. Putt ◽  
G. P. Harris ◽  
R. L. Cuhel

Measurement of 1-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) enhanced fluorescence (FDCMU) suggested that photoinhibition of photosynthesis was frequently an artifact of in situ bottle incubations in Lake Ontario phytoplankton. In a seasonal study, FDCMU of all populations was depressed by bright light in an incubator. However, when the euphotic zone did not exceed the depth of the mixed layer, vertical transport of phytoplankton into either low-light or dark regions apparently allowed reversal of photoinhibition of FDCMU. Advantages of FDCMU as a bioassay of vertical mixing include rapidity of response time, ease of measurement in the field, and insensitivity of this parameter to changes in phosphorus status of the population. Because of seasonal changes in the photoadaptive response of natural populations, the rate constants and threshold light levels required to cause the response must be determined at each use if the method is to be quantitative.


1986 ◽  
Vol 3 (12) ◽  
pp. 2179 ◽  
Author(s):  
Miles N. Wernick ◽  
G. Michael Morris

Sign in / Sign up

Export Citation Format

Share Document