scholarly journals Solar Activity and Regional Climate

Radiocarbon ◽  
2001 ◽  
Vol 43 (2A) ◽  
pp. 439-447 ◽  
Author(s):  
M G Ogurtsov ◽  
G E Kocharov ◽  
M Lindholm ◽  
M Eronen ◽  
Yu A Nagovitsyn

We performed a statistical analysis of the data on summer temperature anomalies in northern Fennoscandia (8–1995 AD) and found that a 70–130-yr cycle is present in this series during most of the time period. A comparison of the reconstructed northern Fennoscandia temperature with different indicators of solar activity (Wolf numbers, the length of solar Schwabe cycle, extended bi-decadal radiocarbon series, and data on sunspots observed by naked eye) shows that the more probable cause of the periodicity is the modulation of regional northern Fennoscandia climate by the long-term solar cycle of Gleissberg. The effect of this century-scale solar modulation of the global Northern Hemisphere temperature is weaker.

1995 ◽  
Vol 21 ◽  
pp. 263-270 ◽  
Author(s):  
Oddur Sigurdsson ◽  
Trausti Jónsson

Glacier variations in Iceland have been recorded systematically since the 1930s at 27 different glacier termini. The advance/retreat records of non-surging glaciers show a clear relationship to climate. A change in the climate typically leads to a response at the snout within a time period of 10 years. The records of surge-type and mixed-type glaciers show variations that are unrelated to climate. However, the maximum extension of surge-type glaciers at the end of surges and the minimum extension just before a surge appear to be influenced by long-term climate changes. A strong warming in the 1920s was a turning-point in the climate of Iceland which led to a rapid retreat of most glaciers in the country in the 1930s. The summer temperature fell gradually after 1940, with a notable drop in the mid-1960s. Since about 1970, more than half of the glaciers in Iceland have been advancing. In the western part of the country, the recovery is about one-quarter of the ground lost and in the southern, central and northern parts it is about one-half. In southeastern Iceland, some of the glaciers have been stationary for about 30 years while others have advanced slightly. Glacier snow-budget index computed from meteorological data indicates that the timing of the turning-point around 1970 coincides with a minimum in the cumulative net glacier mass balance.


Radiocarbon ◽  
1980 ◽  
Vol 22 (2) ◽  
pp. 133-158 ◽  
Author(s):  
Giuliana Castagnoli ◽  
Devendra Lal

This paper is concerned with the expected deviations in the production rate of natural 14C on the earth due to changes in solar activity. We review the published estimates of the global production rates of 14C due to galactic and solar cosmic ray particles, and present new estimates of the expected secular variations in 14C production, taking into account the latest information available on galactic cosmic ray modulation and long-term variations in solar activity.


2000 ◽  
Vol 54 (2) ◽  
pp. 284-294 ◽  
Author(s):  
Atte Korhola ◽  
Jan Weckström ◽  
Lasse Holmström ◽  
Panu Erästö

A diatom-based calibration model for predicting summer temperatures was developed using climatically sensitive subarctic lakes in northern Fennoscandia. The model was applied to a sediment core from a treeline lake to infer trends in Holocene climate. The record exhibits long-term variations, as well as a series of shorter-term fluctuations on a time scale of centuries. Summers were warmest in the area about 6200 cal yr B.P. and featured distinct cooling episodes around 8300, 7200, 4200, 3000, and 400 cal yr B.P., most of these coinciding with some known climate events (e.g., the 8200 cal yr B.P. event and the Little Ice Age). The similarity of the observed shifts with the pacings of climate events from marine and ice-core records represents evidence for coupled ocean–atmosphere forcing of the regional climate.


2006 ◽  
Vol 24 (2) ◽  
pp. 769-778 ◽  
Author(s):  
H. Lundstedt ◽  
L. Liszka ◽  
R. Lundin ◽  
R. Muscheler

Abstract. Long-term solar activity has been studied with a set of wavelet methods. The following indicators of long-term solar activity were used; the group sunspot number, the sunspot number, and the 14C production rate. Scalograms showed the very long-term scales of 2300 years (Hallstat cycle), 900-1000 years, 400-500 years, and 200 years (de Vries cycle). Scalograms of a newly-constructed 14C production rate showed interesting solar modulation during the Maunder minimum. Multi-Resolution Analysis (MRA) revealed the modulation in detail, as well as peaks of solar activity not seen in the sunspot number. In both the group sunspot number scalogram and the 14C production rate scalogram, a process appeared, starting or ending in late 1700. This process has not been discussed before. Its solar origin is unclear. The group sunspot number ampligram and the sunspot number ampligram showed the Maunder and the Dalton minima, and the period of high solar activity, which already started about 1900 and then decreased again after mid 1990. The decrease starts earlier for weaker components. Also, weak semiperiodic activity was found. Time Scale Spectra (TSS) showed both deterministic and stochastic processes behind the variability of the long-term solar activity. TSS of the 14C production rate, group sunspot number and Mt. Wilson sunspot index and plage index were compared in an attempt to interpret the features and processes behind the long-term variability.


2020 ◽  
Vol 29 (1) ◽  
pp. 28-31
Author(s):  
Lihua Ma ◽  
José M. Vaquero

AbstractSolar activity affects geophysical and heliophysical processes. Long-term changes in solar activity are closely related to climate change. Solar physicists and earth science researchers need longer observations of solar activity. Current continuous observations of solar activity are only about 400 years. Some scholars have compiled naked-eye observations of sunspots from 200 BC to 1918 AD from historical documents. In this present work, the authors use the weighted wavelet transform to study the observations series. The results show the Suess - de Vries cycle with a period from 195- to 235-year existing in the discontinuous sunspot series. Meanwhile, the cycle signal changes with time. Especially, the Suess/de Vries cycle is relatively obvious from 200 BC to 400 AD, 800 AD to 1340 AD, 1610 AD to 1918 AD, with a period of about 211-year, about 195-year, and about 235-year, respectively.


Radiocarbon ◽  
2020 ◽  
pp. 1-14
Author(s):  
Alexandra Fogtmann-Schulz ◽  
Claudia Baittinger ◽  
Christoffer Karoff ◽  
Jesper Olsen ◽  
Mads F Knudsen

ABSTRACT We present a new biennial record of radiocarbon (14C) measured in Danish oak. The new record covers the years 1251–1378 CE, thereby spanning the Grand Solar Minimum known as the Wolf Minimum. Two oak samples from every other year were measured at the AMS facility at Aarhus University (Denmark), resulting in an average precision of 1.4‰ for the record. Spectral analysis of the new record revealed two peaks at 27 and 9.1 years, which could indicate the Hale cycle was lengthened and the Schwabe cycle shortened during the Wolf Minimum, but it is also possible that the amplitude of the Schwabe cycle was too small to be accurately identified with the acquired precision of this record. The record was bandpass filtered to investigate the variability of the amplitude in different bands, which showed a dampening of the amplitude during the second half of the Wolf Minimum in bands centered on the Schwabe and the Hale cycle, respectively. A reconstruction of the solar modulation function, Φ, also showed a periodicity of ca. 9 years, and indicated that the Wolf Minimum was preceeded by one cycle of decreased solar activity.


1990 ◽  
Vol 14 ◽  
pp. 176-182 ◽  
Author(s):  
W.B. Lyons ◽  
P.A. Mayewski ◽  
M.J. Spencer ◽  
M.S. Twickler ◽  
T.E. Graedel

The effect of volcanic emission of acidic aerosols on climate is well documented. The presence of acid droplets in the stratosphere can reduce transmissivity and hence decrease surface temperatures. Since the amount and chemical composition of erupted material has important effects on regional climate, knowledge of past volcanic events is of extreme importance. Detailed glaciochemical records provide the only milieu wherein the geochemistry of paleovolcanic events can be fully documented. We present a detailed sulfate and chloride record from an ice core drilled at site 20 D, 40 km SW of Dye 3 in southern Greenland. The record spans the time period 1869–1984 with chemical analyses of approximately eight samples per year. Time series decomposition and locally weighted scatter plot smoothing techniques were used to extract long term trends from the data so that individual volcanic eruptions could be documented. A number of events identified here have been unnoticed previously and a high percentage of the major chemical signatures documenting these events is associated with large decreases in temperature in the latitudinal zone 60–90 °N. Many authors have pointed out that the amount of volcanic acids such as HCl and H2SO4 injected into the atmosphere has a very important influence on global climate, yet this volcanic input has been difficult to quantify prior to ∼1960. Our data help to alleviate this problem. These individual events can be compared to available frost tree ring data from North America, further establishing a volcanism-climatic linkage.


1990 ◽  
Vol 14 ◽  
pp. 176-182 ◽  
Author(s):  
W.B. Lyons ◽  
P.A. Mayewski ◽  
M.J. Spencer ◽  
M.S. Twickler ◽  
T.E. Graedel

The effect of volcanic emission of acidic aerosols on climate is well documented. The presence of acid droplets in the stratosphere can reduce transmissivity and hence decrease surface temperatures. Since the amount and chemical composition of erupted material has important effects on regional climate, knowledge of past volcanic events is of extreme importance. Detailed glaciochemical records provide the only milieu wherein the geochemistry of paleovolcanic events can be fully documented. We present a detailed sulfate and chloride record from an ice core drilled at site 20 D, 40 km SW of Dye 3 in southern Greenland. The record spans the time period 1869–1984 with chemical analyses of approximately eight samples per year. Time series decomposition and locally weighted scatter plot smoothing techniques were used to extract long term trends from the data so that individual volcanic eruptions could be documented. A number of events identified here have been unnoticed previously and a high percentage of the major chemical signatures documenting these events is associated with large decreases in temperature in the latitudinal zone 60–90 °N. Many authors have pointed out that the amount of volcanic acids such as HCl and H2SO4injected into the atmosphere has a very important influence on global climate, yet this volcanic input has been difficult to quantify prior to ∼1960. Our data help to alleviate this problem. These individual events can be compared to available frost tree ring data from North America, further establishing a volcanism-climatic linkage.


1998 ◽  
Vol 167 ◽  
pp. 488-492 ◽  
Author(s):  
Helen E. Coffey ◽  
Christine D. Hanchett

AbstractAlmost 70 years ago Lucien d’Azambuja published the first “Cartes Synoptiques de la Chromosphere Solaire et Catalogue des Filaments de la Couche Superieure” (d’Azambuja 1928), a compendium of reduced solar observations covering the time period March 1919–January 1920. The compiled database gives both visual and quantitative measures of solar activity beginning with Carrington rotation 876. Since then, data through 1989 have been published in succeeding Cartes Synoptiques issues. The World Data Center A (WDC-A) for Solar-Terrestrial Physics has digitized several long term solar publications, including the numerical text portion of the Cartes Synoptiques. We present an overview of this extraordinary historical solar database. WDC-A is using current technology to meet user requirements for data management, analysis and distribution, has compiled over 100 Megabytes of historical solar data and made it available over the Internet as part of a continuing data rescue effort. The data can be accessed via the World Wide Web at http://www.ngdc.noaa.gov/stp.


In this paper I review both the history of solar observations in ancient China and recent researches on solar variability. The paper consists of three parts. In the first part I describe Sun worship and the early observations of solar phenomena. In the second part I concentrate on sunspot observations and improving the catalogue of naked-eye sunspot records. In the third part I discuss long-term variations of solar activity by using historical sunspot records over 2000 years. The 210-year cycle, which has the largest significance in the power spectrum, may have an important influence on the forecasting of the next cycle (no. 22).


Sign in / Sign up

Export Citation Format

Share Document