scholarly journals Dating Recent Peat Accumulation in European Ombrotrophic Bogs

Radiocarbon ◽  
2013 ◽  
Vol 55 (3) ◽  
pp. 1763-1778 ◽  
Author(s):  
Johannes van der Plicht ◽  
Dan Yeloff ◽  
Marjolein van der Linden ◽  
Bas van Geel ◽  
Sally Brain ◽  
...  

This study compares age estimates of recent peat deposits in 10 European ombrotrophic (precipitation-fed) bogs produced using the 14C bomb peak, 210Pb, 137Cs, spheroidal carbonaceous particles (SCPs), and pollen. At 3 sites, the results of the different dating methods agree well. In 5 cores, there is a clear discrepancy between the 14C bomb peak and 210Pb age estimates. In the upper layers of the profiles, the age estimates of 14C and 210Pb are in agreement. However, with increasing depth, the difference between the age estimates appears to become progressively greater. The evidence from the sites featured in the study suggests that, provided aboveground plant material (seeds, leaves) is selected for dating, the 14C bomb peak is a reliable dating method, and is not significantly affected by the incorporation of old carbon with low 14C content originating from sources including air pollution deposition or methane produced by peat decomposition. 210Pb age estimates that are too old may be explained by the enrichment of 210Pb activity in the surface layers of peat resulting from a hypothesized mechanism where rapidly infilling hollows, rich in binding sites, may scavenge 210Pb associated with dissolved organic matter passing through the hollow, as part of the surface drainage network. Until further research identifies and resolves the cause of the inaccuracy in 210Pb dating, age estimates of peat samples based only on 210Pb should be used with caution.

2019 ◽  
Vol 92 (2) ◽  
pp. 483-496 ◽  
Author(s):  
Evan New ◽  
Yurena Yanes ◽  
Robert A.D. Cameron ◽  
Joshua H. Miller ◽  
Dinarte Teixeira ◽  
...  

AbstractUnderstanding the properties of time averaging (age mixing) in a stratigraphic layer is essential for properly interpreting the paleofauna preserved in the geologic record. This work assesses the age and quantifies the scale and structure of time averaging of land snail-rich colluvial sediments from the Madeira Archipelago (Portugal) by dating individual shells using amino acid racemization calibrated with graphite-target and carbonate-target accelerator mass spectrometry radiocarbon methods. Gastropod shells of Actinella nitidiuscula were collected from seven sites on the volcanic islands of Bugio and Deserta Grande (Desertas Islands), where snail shells are abundant and well preserved in Quaternary colluvial deposits. Results show that the shells ranged in age from modern to ~48 cal ka BP (calibrated radiocarbon age), covering the last glacial and present interglacial periods. Snail shells retrieved from two of the colluvial sites exhibit multimillennial age mixing (>6 ka), which significantly exceeds the analytical error from dating methods and calibration. The observed multimillennial mixing of these assemblages should be taking into consideration in upcoming paleoenvironmental and paleoecological studies in the region. The extent of age mixing may also inform about the time span of colluvial deposition, which can be useful in future geomorphological studies. In addition, this study presents the first carbonate-target radiocarbon results for land snail shells and suggests that this novel, rapid, and more affordable dating method offers reliable age estimates for small land snail shells younger than ~20 cal ka BP.


Radiocarbon ◽  
2005 ◽  
Vol 47 (1) ◽  
pp. 135-145 ◽  
Author(s):  
Dan J Charman ◽  
Mark H Garnett

Dating sediments which have accumulated over the last few hundred years is critical to the calibration of longer-term paleoclimate records with instrumental climate data. We attempted to use wiggle-matched radiocarbon ages to date 2 peat profiles from northern England which have high-resolution records of paleomoisture variability over the last ∼300 yr. A total of 65 14C accelerator mass spectrometry (AMS) measurements were made on 33 macrofossil samples. A number of the age estimates were older than expected and some of the oldest ages occurred in the upper parts of the sequence, which had been dated to the late 19th and early 20th century using other techniques. We suggest that the older 14C ages are the result of contamination by industrial pollution. Based on counts of spheroidal carbonaceous particles (SCPs), the potential aging effect for SCP carbon was calculated and shown to be appreciable for samples from the early 20th century. Ages corrected for this effect were still too old in some cases, which could be a result of fossil CO2 fixation, non-SCP particulate carbon, contamination due to imperfect cleaning of samples, or the “reservoir effect” from fixation of fossil carbon emanating from deeper peat layers. Wiggle matches based on the overall shape of the depth-14C relationship and the 14C minima in the calibration curve could still be identified. These were tested against other age estimates (210Pb, pollen, and SCPs) to provide new age-depth models for the profiles. New approaches are needed to measure the impact of industrially derived carbon on recent sediment ages to provide more secure chronologies over the last few hundred years.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ambroos Brouwer ◽  
Xuxi Jin ◽  
Aisha Humaira Waldi ◽  
Steven Verheyen

AbstractOlder participants who are briefly presented with the ‘my wife/mother-in-law’ ambiguous figure estimate its age to be higher than young participants do. This finding is thought to be the result of a subconscious social group bias that influences participants’ perception of the figure. Because people are better able to recognize similarly aged individuals, young participants are expected to perceive the ambiguous figure as a young woman, while older participants are more likely to recognize an older lady. We replicate the difference in age estimates, but find no relationship between participants’ age and their perception of the ambiguous figure. This leads us to conclude that the positive relationship between participants’ age and their age estimates of the ambiguous ‘my wife/mother-in-law’ figure is better explained by the own-age anchor effect, which holds that people use their own age as a yard stick to judge the age of the figure, regardless of whether the young woman or the older lady is perceived. Our results disqualify the original finding as an example of cognitive penetrability: the participants’ age biases their judgment of the ambiguous figure, not its perception.


1994 ◽  
Vol 340 ◽  
Author(s):  
Bing-Lin Gu ◽  
Jing-Zhi Yu ◽  
Xiao Hu ◽  
Kaoru Ohno ◽  
Yoshiyuki Kawazoe

ABSTRACTA concentration wave method for several interpenetrating Bravais sublattices is presented by considering the intralayer and interlayer effective interactions and the difference between the surface layers and the deeper layers in III – V alloys. The ground state ordered structures of ternary III – V semiconductor alloys are deduced and a dynamic model is established.


2015 ◽  
Author(s):  
Priya Moorjani ◽  
Sriram Sankararaman ◽  
Qiaomei Fu ◽  
Molly Przeworski ◽  
Nick J Patterson ◽  
...  

The study of human evolution has been revolutionized by inferences from ancient DNA analyses. Key to these is the reliable estimation of the age of ancient specimens. The current best practice is radiocarbon dating, which relies on characterizing the decay of radioactive carbon isotope (14C), and is applicable for dating up to 50,000-year-old samples. Here, we introduce a new genetic method that uses recombination clock for dating. The key idea is that an ancient genome has evolved less than the genomes of extant individuals. Thus, given a molecular clock provided by the steady accumulation of recombination events, one can infer the age of the ancient genome based on the number of missing years of evolution. To implement this idea, we take advantage of the shared history of Neanderthal gene flow into non-Africans that occurred around 50,000 years ago. Using the Neanderthal ancestry decay patterns, we estimate the Neanderthal admixture time for both ancient and extant samples. The difference in these admixture dates then provides an estimate of the age of the ancient genome. We show that our method provides reliable results in simulations. We apply our method to date five ancient Eurasian genomes with radiocarbon dates ranging between 12,000 to 45,000 years and recover consistent age estimates. Our method provides a complementary approach for dating ancient human samples and is applicable to ancient non-African genomes with Neanderthal ancestry. Extensions of this methodology that use older shared events may be able to date ancient genomes that fall beyond the radiocarbon frontier.


1975 ◽  
Vol 19 (1) ◽  
pp. 21-32
Author(s):  
J.G. Collard ◽  
J.H. Temmink

Calculations of the density of Concanavalin A (Con A)-binding sites on normal and transformed fibroblasts have, as yet, been based on the unproven assumption that suspended cells are smooth spheres. We studied the surface morphology of suspended normal and transformed fibroblasts with scanning and transmission electron microscopes, and found a large difference in surface morphology between suspended normal and transformed 3T3 cells. When this difference in surface morphology was taken into account, the estimated cell surface area of normal 3T3 cells was approximately seven times larger than that of transformed 3T3 cells. Since equal numbers of 3H-Con A molecules are bound on normal and transformed cells, the density of Con A-binding sites is approximately seven times greater on transformed than on normal 3T3 cells. The difference in density of Con A-binding sites between normal and transformed fibroblasts might be sufficient to explain the difference in agglutination response, as originally suggested by Burger, and may also be the cause of the different degrees of clustering of Con A-binding sites on the plasma membrane of these cells.


2005 ◽  
Vol 201 ◽  
pp. 536-537
Author(s):  
Sukyoung. Yi ◽  
T. Brown ◽  
S. Heap ◽  
I. Hubeny ◽  
W. Landsman ◽  
...  

Pinning down the ages of high redshift galaxies is the most direct way of constraining the galaxy formation epoch. There has been a debate on the age of LBDS 53W091, a red galaxy at z=1.5. The discrepancy in the age estimates of various groups is due to the difference in the population synthesis model. However, there is generally a good agreement among popular models. Polishing the models and assessing their internal uncertainties are crucial in the analysis of high redshift galaxies.


Sign in / Sign up

Export Citation Format

Share Document