Carbon Isotope Composition of Atmospheric Carbon Dioxide in Southern Poland: Imprint of Anthropogenic CO2 Emissions in Regional Biosphere

Radiocarbon ◽  
2013 ◽  
Vol 55 (2) ◽  
pp. 848-864 ◽  
Author(s):  
Anna Pazdur ◽  
Tadeusz Kuc ◽  
Sławomira Pawełczyk ◽  
Natalia Piotrowska ◽  
Barbara Sensuła ◽  
...  

Southern Poland is home to numerous large mining and energy industry facilities, which consume relatively great amounts of fossil fuels. Temporal and spatial distribution of CO2 emissions to the atmosphere were estimated on the basis of 13C and 14C isotope measurements in atmospheric CO2 and in α-cellulose from pine tree rings. The Suess effect was evaluated in the atmospheric CO2 from the High Tatra Mountains (Kasprowy Wierch) and the urban area (Kraków), as well as in tree rings from Niepołomice Forest near Kraków. Two different models were used to estimate the emission component recorded in tree ring δ13C on the background of climatic changes.

Radiocarbon ◽  
2019 ◽  
Vol 61 (6) ◽  
pp. 1775-1784
Author(s):  
Helene Svarva ◽  
Pieter Grootes ◽  
Martin Seiler ◽  
Terje Thun ◽  
Einar Værnes ◽  
...  

ABSTRACTTo resolve an inconsistency around AD 1895 between radiocarbon (14C) measurements on oak from the British Isles and Douglas fir and Sitka spruce from the Pacific Northwest, USA, we measured the 14C content in single-year tree rings from a Scots pine tree (Pinus sylvestris L.), which grew in a remote location in Saltdal, northern Norway. The dataset covers the period AD 1864–1937 and its results are in agreement with measurements from the US Pacific coast around 1895. The most likely explanation for older ages in British oak in this period seems to be 14C depletion associated with the combustion of fossil fuels.


2021 ◽  
Author(s):  
Barbara Sensuła ◽  
Nathalie Fagel

<p>Trees can provide annual records of ecosystem changes connected with human activity over several decades. These changes can be recorded in the pattern of variation of tree-rings widths and in the variation in the elemental composition of wood. Analysis of trace metal pollution is based on the assumption that element concentrations in tree foliage and tree rings represent element availability in the environment.</p><p>We determined the chemical composition of pine needles and annual tree rings to monitor environmental contamination in an urban forest environment in the most industrialized part of southern Poland.</p><p>The concentrations of trace elements (Cr, Co, Ni, Cu, Zn, Pb) and the Pb isotope composition were measured in needles from Pinus sylvestris L. growing in nine urban forests near five factories. Trace elemental concentration and Pb isotope ratio were determined by ICP-MS and MC-ICP-MS, respectively. The needles were characterized based on the concentrations of Cr, ranging from 0.05 to 0.7 mg/kg, Co, from 0.005 to 0.075 mg/kg, Ni, from 0.12 to 0.66 mg/kg, Cu, from 0.49 to 1.0 mg/kg, Zn, from 3.9 to 14 mg/kg, and Pb, from 0.06 to 0.53 mg/kg. The <sup>208</sup>Pb/<sup>206</sup>Pb ratio ranged from 2.08 to 2.11 and the <sup>206</sup>Pb/<sup>207</sup>Pb ratio between 1.15 and 1.17. The heterogeneity of Pb isotope ratio indicates that there are different sources affecting the Pb isotopic composition of pine needles (Sensuła et al., 2021).</p><p>In one of the investigated site, a radial trace-element profiles were determined by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (Laser ablation: New Wave Research UP-193 FX Fast Excimer, ICP-MS: Thermo Scientific X-Series2 with CCT -Collision Cell Technology) at Royal Museum for Central Africa (Belgium). LA-ICP-MS provides a repeatable, minimally destructive, sensitive method for determining many elements in wood tissue, with relatively high spatial resolution.Temporal variations of element concentration (median) in annual tree-rings of pines were compared with time series of wet deposition of pollutant and air pollutant concentration in the investigated area. The similar trends of magnitudes changes can be observed between analysed elements concentration (Na, Mg, Fe, Ni, Zn) and total wet deposition of these elements in the environment during vegetation period or these elements concentration in the rain (Sensuła et al. 2017). </p><p>Different space-time patterns of element accumulation in pine needles and annaul tree rings were observed. The variation in isotopic composition reflects a mix between different anthropogenic sources.</p><p> </p><p>References:</p><p>Sensuła, B., Wilczyński, S., Monin, L., Allan, M., Pazdur, A., & Fagel, N. (2017). Variations of tree ring width and chemical composition of wood of pine growing in the area nearby chemical factories, Geochronometria, 44(1), 226-239. doi: https://doi.org/10.1515/geochr-2015-0064</p><p>Sensuła, B., Fagel, N., & Michczyński, A. (2021). Radiocarbon, trace elements and pb isotope composition of pine needles from a highly industrialized region in southern Poland. Radiocarbon, 1-14. doi:10.1017/RDC.2020.132</p>


Radiocarbon ◽  
2019 ◽  
Vol 62 (2) ◽  
pp. 497-502
Author(s):  
Barbara Sensuła ◽  
Natalia Piotrowska

ABSTRACTIn this paper we present data from the measurements of carbon isotopes (Δ14C and δ13C) from α-cellulose extracted from pine tree-rings. The samples were collected in four forests located in the most industrialized part of Poland, where coal mining and coal-based energy are an important branch of industry. The investigated period of time (1975–2012) covers the period of development in coal mining and other industry sectors. Stable isotope composition has been determined with using IRMS and radiocarbon concentration was determinate by AMS.


2021 ◽  
Author(s):  
Piyu Ke ◽  
Zhu Liu ◽  
Wei Li ◽  
Xianghui Guo ◽  
Minhan Dai ◽  
...  

<p>Combining updated methodology and data from different sources, we reported the estimates of China's carbon budget, including carbon sources from fossil fuel combustion and industrial process, and carbon sinks from terrestrial and marine systems. China's carbon budgets provide insights on the temporal and spatial distribution of the uptake of atmospheric carbon dioxide, and can be used to evaluate carbon cycle models and to define baselines for supporting China's climate policies and mitigation efforts. So far, we have found that terrestrial carbon sinks of China have increased significantly in the past 70 years with the development of afforestation projects in China. Seas of China have gradually transformed from carbon sources to carbon sinks.</p>


Sign in / Sign up

Export Citation Format

Share Document