scholarly journals A Review of Dynamical Evidence Concerning a Former Asteroidal Planet

1979 ◽  
Vol 81 ◽  
pp. 257-262
Author(s):  
T. C. Van Flandern

This paper is a brief review of results presented elsewhere (Van Flandern 1977, 1978). The conclusion of these results is that at least the comets, and probably also the asteroids and meteorites, originated in the breakup of a major planet in the present location of the asteroid belt, at an epoch of just 5×106 years ago. Although there are many “well-known facts” about the solar system which seem to contradict this conclusion, these contradictory “facts”, upon closer examination, are often not so convincing as we have been inclined to assume; in each instance so far suggested there is a plausible alternative interpretation of the data which is supportive of the breakup hypothesis. A compelling contradictory argument has not yet surfaced. In view of this, and in consideration of the strength of the arguments favoring the hypothesis, it will be necessary to judge the conclusion on the merits of the case, without the intervention of the apriori decision that it cannot be true.

1977 ◽  
Vol 39 ◽  
pp. 475-481 ◽  
Author(s):  
T. C. Van Flandern

Dynamical calculations by Ovenden, indicating the former existence of a 90-Earth-mass planet in the asteroid belt, have now been supported by a study of orbital element distributions of very-long-period comets. The indicated epoch for disintegration of the planet is just 5 x 106 years ago.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Q. H. S. Chan ◽  
A. Stephant ◽  
I. A. Franchi ◽  
X. Zhao ◽  
R. Brunetto ◽  
...  

AbstractUnderstanding the true nature of extra-terrestrial water and organic matter that were present at the birth of our solar system, and their subsequent evolution, necessitates the study of pristine astromaterials. In this study, we have studied both the water and organic contents from a dust particle recovered from the surface of near-Earth asteroid 25143 Itokawa by the Hayabusa mission, which was the first mission that brought pristine asteroidal materials to Earth’s astromaterial collection. The organic matter is presented as both nanocrystalline graphite and disordered polyaromatic carbon with high D/H and 15N/14N ratios (δD =  + 4868 ± 2288‰; δ15N =  + 344 ± 20‰) signifying an explicit extra-terrestrial origin. The contrasting organic feature (graphitic and disordered) substantiates the rubble-pile asteroid model of Itokawa, and offers support for material mixing in the asteroid belt that occurred in scales from small dust infall to catastrophic impacts of large asteroidal parent bodies. Our analysis of Itokawa water indicates that the asteroid has incorporated D-poor water ice at the abundance on par with inner solar system bodies. The asteroid was metamorphosed and dehydrated on the formerly large asteroid, and was subsequently evolved via late-stage hydration, modified by D-enriched exogenous organics and water derived from a carbonaceous parent body.


2014 ◽  
Vol 9 (S310) ◽  
pp. 194-203 ◽  
Author(s):  
Sean N. Raymond ◽  
Alessandro Morbidelli

AbstractThe “Grand Tack” model proposes that the inner Solar System was sculpted by the giant planets' orbital migration in the gaseous protoplanetary disk. Jupiter first migrated inward then Jupiter and Saturn migrated back outward together. If Jupiter's turnaround or “tack” point was at ~ 1.5 AU the inner disk of terrestrial building blocks would have been truncated at ~ 1 AU, naturally producing the terrestrial planets' masses and spacing. During the gas giants' migration the asteroid belt is severely depleted but repopulated by distinct planetesimal reservoirs that can be associated with the present-day S and C types. The giant planets' orbits are consistent with the later evolution of the outer Solar System.Here we confront common criticisms of the Grand Tack model. We show that some uncertainties remain regarding the Tack mechanism itself; the most critical unknown is the timing and rate of gas accretion onto Saturn and Jupiter. Current isotopic and compositional measurements of Solar System bodies – including the D/H ratios of Saturn's satellites – do not refute the model. We discuss how alternate models for the formation of the terrestrial planets each suffer from an internal inconsistency and/or place a strong and very specific requirement on the properties of the protoplanetary disk.We conclude that the Grand Tack model remains viable and consistent with our current understanding of planet formation. Nonetheless, we encourage additional tests of the Grand Tack as well as the construction of alternate models.


Author(s):  
Bryan Holler

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Planetary Science. Please check back later for the full article. The International Astronomical Union (IAU) officially recognizes five objects as dwarf planets: Ceres in the main asteroid belt between Mars and Jupiter; and Pluto, Eris, Haumea, and Makemake in the trans-Neptunian region beyond the orbit of Neptune. However, the definition used by the IAU applies to many other trans-Neptunian objects (TNOs) and can be summarized as any nonsatellite large enough to be rounded by its own gravity. Practically speaking, this means any nonsatellite with a diameter >400 km. In the trans-Neptunian region, there are more than 100 objects that satisfy this definition, based on published results and diameter estimates. The dynamical structure of the trans-Neptunian region records the migration history of the giant planets in the early days of the solar system. The semi-major axes, eccentricities, and orbital inclinations of TNOs across various dynamical classes provide constraints on different aspects of planetary migration. For many TNOs, the orbital parameters are all that is known about them, due to their large distances, small sizes, and low albedos. The TNO dwarf planets are a different story. These objects are large enough to be studied in more detail from ground- and space-based observatories. Imaging observations can be used to detect satellites and measure surface colors, while spectroscopy can be used to constrain surface composition. In this way, TNO dwarf planets not only help provide context for the dynamical evolution of the outer solar system, but also reveal the composition of the primordial solar nebula as well as the physical and chemical processes at work at very cold temperatures. The largest TNO dwarf planets, those officially recognized by the IAU, plus others such as Sedna, Quaoar, and Gonggong, are large enough to support volatile ices on their surfaces in the present day. These ices are able to exist as solids and gases on some TNOs, due to their sizes and surface temperatures (similar to water ice on Earth) and include N2 (nitrogen), CH4 (methane), and CO (carbon monoxide). A global atmosphere composed of these three species has been detected around Pluto, the largest TNO dwarf planet, with the possibility of local atmospheres or global atmospheres at perihelion for Eris and Makemake. The presence of nonvolatile species, such as H2O (water), NH3 (ammonia), and organics provide valuable information on objects that may be too small to retain volatile ices over the age of the solar system. In particular, large quantities of H2O mixed with NH3 points to ancient cryovolcanism caused by internal differentiation of ice from rock. Organic material, formed through radiation processing of surface ices such as CH4, records the radiation histories of these objects as well as providing clues to their primordial surface compositions. The dynamical, physical, and chemical diversity of the >100 TNO dwarf planets are key to understanding the formation of the solar system and subsequent evolution to its current state. Most of our knowledge comes from a small handful of objects, but we are continually expanding our horizons as additional objects are studied in more detail.


1974 ◽  
Vol 3 ◽  
pp. 489-489
Author(s):  
M. W. Ovenden

AbstractThe intuitive notion that a satellite system will change its configuration rapidly when the satellites come close together, and slowly when they are far apart, is generalized to ‘The Principle of Least Interaction Action’, viz. that such a system will most often be found in a configuration for which the time-mean of the action associated with the mutual interaction of the satellites is a minimum. The principle has been confirmed by numerical integration of simulated systems with large relative masses. The principle lead to the correct prediction of the preference, in the solar system, for nearly-commensurable periods. Approximate methods for calculating the evolution of an actual satellite system over periods ˜ 109 yr show that the satellite system of Uranus, the five major satellites of Jupiter, and the five planets of Barnard’s star recently discovered, are all found very close to their respective minimum interaction distributions. Applied to the planetary system of the Sun, the principle requires that there was once a planet of mass ˜ 90 Mθ in the asteroid belt, which ‘disappeared’ relatively recently in the history of the solar system.


2020 ◽  
Vol 497 (1) ◽  
pp. L46-L49 ◽  
Author(s):  
A Morbidelli ◽  
K Batygin ◽  
R Brasser ◽  
S N Raymond

ABSTRACT In two recent papers published in MNRAS, Namouni and Morais claimed evidence for the interstellar origin of some small Solar system bodies, including: (i) objects in retrograde co-orbital motion with the giant planets and (ii) the highly inclined Centaurs. Here, we discuss the flaws of those papers that invalidate the authors’ conclusions. Numerical simulations backwards in time are not representative of the past evolution of real bodies. Instead, these simulations are only useful as a means to quantify the short dynamical lifetime of the considered bodies and the fast decay of their population. In light of this fast decay, if the observed bodies were the survivors of populations of objects captured from interstellar space in the early Solar system, these populations should have been implausibly large (e.g. about 10 times the current main asteroid belt population for the retrograde co-orbital of Jupiter). More likely, the observed objects are just transient members of a population that is maintained in quasi-steady state by a continuous flux of objects from some parent reservoir in the distant Solar system. We identify in the Halley-type comets and the Oort cloud the most likely sources of retrograde co-orbitals and highly inclined Centaurs.


2019 ◽  
Vol 15 (S350) ◽  
pp. 471-473
Author(s):  
Nataša Todorović

AbstractThe aim of this work is to explain the possible mechanism in the early Solar System, by which water-rich asteroids may have been delivered to Earth. Carbonaceous (C-type) asteroids, with a large fraction of water molecules, dominate in the outer part of the asteroid belt and the possibility of their migration toward Earth is still not well explained. In this work, we observe very efficient dynamical routes along which C-type water-bearing asteroids are delivered to Earth.


2004 ◽  
Vol 202 ◽  
pp. 184-186
Author(s):  
Keith Grogan ◽  
S.F. Dermott ◽  
T.J.J. Kehoe

In this paper we demonstrate how the action of secular resonances near the inner edge of the asteroid belt strongly effects the inclinations and eccentricities of asteroidal dust particles, such that they lose the orbital characteristics of their parent body and are dispersed into the zodiacal background. As a consequence, it may not be possible to relate the distribution of interplanetary material at 1 AU to given asteroidal or cometary sources with the level of confidence previously imagined.


1999 ◽  
Vol 172 ◽  
pp. 25-37
Author(s):  
S. Ferraz-Mello

AbstractThis paper reviews recent advances in several topics of resonant asteroidal dynamics as the role of resonances in the transportation of asteroids and asteroidal debris to the inner and outer solar system; the explanation of the contrast of a depleted 2/1 resonance (Hecuba gap) and a high-populated 3/2 resonance (Hilda group); the overall stochasticity created in the asteroid belt by the short-period perturbations of Jupiter’s orbit, with emphasis in the formation of significant three-period resonances, the chaotic behaviour of the outer asteroid belt, and the depletion of the Hecuba gap.


Icarus ◽  
2010 ◽  
Vol 207 (2) ◽  
pp. 744-757 ◽  
Author(s):  
David A. Minton ◽  
Renu Malhotra
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document