scholarly journals MKJ and MSS Classification of Solar-Type Stars Within 100 Parsecs of the Sun: Preliminary Results

1985 ◽  
Vol 111 ◽  
pp. 407-410
Author(s):  
M. Fracassini ◽  
L. E. Pasinetti ◽  
M. Borella ◽  
A. Pasinetti

A study of the distribution of spectral types of Solar Type Stars (STS) in the revised MKJ and MSS classifications is made on 3919 F8-K3 HD spectral-type stars brighter than mv=10. By means of the solar color indices U-B and B-V 697 STS were selected. The spectral types G3V and G5V have the highest percentages in MSS and MKJ, respectively, confirming statistically the results published by Keenan and Pitts (1980) and by Hardorp (1982). The distribution of the color indices U-B and B-V in the revised G2V spectral type shows that these are good selection criteria for STS and are in the range 0.06 ≤ U-B ≤ 0.10 and 0.58 ≤ B-V ≤ 0.65.

1997 ◽  
Vol 161 ◽  
pp. 707-709 ◽  
Author(s):  
Jun Jugaku ◽  
Shiro Nishimura

AbstractWe continued our search for partial (incomplete) Dyson spheres associated with 50 solar-type stars (spectral classes F, G, and K) within 25 pc of the Sun. No candidate objects were found.


Author(s):  
T. Zanon ◽  
W. Maly

Abstract Building a portfolio of deformations is the key step for building better defect models for the test and yield learning domain. A viable approach to achieve this goal is through geometric characterization and classification of failure patterns found on memory fail bitmaps. In this paper, we present preliminary results on how to build such a portfolio of deformations for an IC technology of interest based on a fail bitmap analysis study conducted on large, modern SRAM memory products.


2019 ◽  
Vol 15 (S354) ◽  
pp. 384-391
Author(s):  
L. Doyle ◽  
G. Ramsay ◽  
J. G. Doyle ◽  
P. F. Wyper ◽  
E. Scullion ◽  
...  

AbstractWe report on our project to study the activity in both the Sun and low mass stars. Utilising high cadence, Hα observations of a filament eruption made using the CRISP spectropolarimeter mounted on the Swedish Solar Telescope has allowed us to determine 3D velocity maps of the event. To gain insight into the physical mechanism which drives the event we have qualitatively compared our observation to a 3D MHD reconnection model. Solar-type and low mass stars can be highly active producing flares with energies exceeding erg. Using K2 and TESS data we find no correlation between the number of flares and the rotation phase which is surprising. Our solar flare model can be used to aid our understanding of the origin of flares in other stars. By scaling up our solar model to replicate observed stellar flare energies, we investigate the conditions needed for such high energy flares.


1983 ◽  
Vol 66 ◽  
pp. 469-486
Author(s):  
Jørgen Christensen-Dalsgaard ◽  
Søren Frandsen

AbstractEstimates are given for the amplitudes of stochastically excited oscillations in Main Sequence stars and cool giants; these were obtained using the equipartition between convective and pulsational energy which was originally proposed by Goldreich and Keeley. The amplitudes of both velocity and luminosity perturbation generally increase with increasing mass along the Main Sequence as long as convection transports a major fraction of the total flux, and the amplitudes also increase with the age of the model. The 1.5 Mʘ ZAMS model, of spectral type F0, has velocity amplitudes ten times larger than those found in the Sun. For very luminous red supergiants luminosity amplitudes of up to about 0ṃ.1 are predicted, in rough agreement with observations presented by Maeder.


1909 ◽  
Vol 6 (4) ◽  
pp. 145-148 ◽  
Author(s):  
E. H. L. Schwarz

Dr. J. R. Sutton has recently read a most important paper to the Royal Society of South Africa on the diurnal variation of level at Kimberley. The paper gave the preliminary results of observations made during the course of three years upon the variation of the level of the ground as recorded by a large horizontal pendulum of a special design made for the author by the Cambridge Instrument Company. It appeared from the results that the movements in the surface of the ground, which set up corresponding movements in the pendulum, were very great. The maximum westerly elongation of the extremity of the pendulum occurred about 5.30 a.m., the maximum easterly about 4.15 p.m., the medium positions a little before 11 a.m. and 9.30 p.m. Geometrically these movements may be represented on the hypothesis that the hemisphere facing the sun bulges out, forming a sort of meniscus to the geosphere. The rise and fall of the surface of the ground which such a supposition would postulate is enormous, and the very magnitude has led Dr. Sutton to hesitate in giving the figures. There can, however, be very little doubt that some rise and fall in the earth's surface is occasioned by the sun's gravitational pull, although the present figures may have to be lessened by taking into consideration other causes which contribute to the disturbance of the pendulum.


2015 ◽  
Vol 11 (S320) ◽  
pp. 134-137
Author(s):  
John P. Pye ◽  
Simon R. Rosen

AbstractWe present estimates of cool-star X-ray flare rates determined from the XMM-Tycho survey (Pyeet al. 2015, A&A, 581, A28), and compare them with previously published values for the Sun and for other stellar EUV and white-light samples. We demonstrate the importance of applying appropriate corrections, especially in regard to the total, effective size of the stellar sample. Our results are broadly consistent with rates reported in the literature for Kepler white-light flares from solar-type stars, and with extrapolations of solar flare rates, indicating the potential of stellar X-ray flare observations to address issues such as ‘space weather’ in exoplanetary systems and our own solar system.


2022 ◽  
Vol 163 (2) ◽  
pp. 44
Author(s):  
Bradley M. S. Hansen

Abstract We present a catalog of unbound stellar pairs, within 100 pc of the Sun, that are undergoing close, hyperbolic, encounters. The data are drawn from the GAIA EDR3 catalog, and the limiting factors are errors in the radial distance and unknown velocities along the line of sight. Such stellar pairs have been suggested to be possible events associated with the migration of technological civilizations between stars. As such, this sample may represent a finite set of targets for a SETI search based on this hypothesis. Our catalog contains a total of 132 close passage events, featuring stars from across the entire main sequence, with 16 pairs featuring at least one main-sequence star of spectral type between K1 and F3. Many of these stars are also in binaries, so that we isolate eight single stars as the most likely candidates to search for an ongoing migration event—HD 87978, HD 92577, HD 50669, HD 44006, HD 80790, LSPM J2126+5338, LSPM J0646+1829 and HD 192486. Among host stars of known planets, the stars GJ 433 and HR 858 are the best candidates.


2021 ◽  
Vol 922 (2) ◽  
pp. 104
Author(s):  
Raymond G. Carlberg ◽  
Carl J. Grillmair

Abstract The proper motions of stars in the outskirts of globular clusters are used to estimate cluster velocity dispersion profiles as far as possible within their tidal radii. We use individual color–magnitude diagrams to select high-probability cluster stars for 25 metal-poor globular clusters within 20 kpc of the Sun, 19 of which have substantial numbers of stars at large radii. Of the 19, 11 clusters have a falling velocity dispersion in the 3–6 half-mass radii range, 6 are flat, and 2 plausibly have a rising velocity dispersion. The profiles are all in the range expected from simulated clusters that started at high redshift in a zoom-in cosmological simulation. The 11 clusters with falling velocity dispersion profiles are consistent with no dark matter above the Galactic background. The six clusters with approximately flat velocity dispersion profiles could have local dark matter, but are ambiguous. The two clusters with rising velocity dispersion profiles are consistent with a remnant local dark matter halo, but need membership confirmation and detailed orbital modeling to further test these preliminary results.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Nicoletta Dessì ◽  
Barbara Pes

The classification of cancers from gene expression profiles is a challenging research area in bioinformatics since the high dimensionality of microarray data results in irrelevant and redundant information that affects the performance of classification. This paper proposes using an evolutionary algorithm to select relevant gene subsets in order to further use them for the classification task. This is achieved by combining valuable results from different feature ranking methods into feature pools whose dimensionality is reduced by a wrapper approach involving a genetic algorithm and SVM classifier. Specifically, the GA explores the space defined by each feature pool looking for solutions that balance the size of the feature subsets and their classification accuracy. Experiments demonstrate that the proposed method provide good results in comparison to different state of art methods for the classification of microarray data.


Sign in / Sign up

Export Citation Format

Share Document