scholarly journals Radio Emission from Extended Shell-Like SNRs

1998 ◽  
Vol 188 ◽  
pp. 249-250
Author(s):  
A.I. Asvarov

Observations of the soft X-Ray background and interstellar UV absorption lines have indicated that a large fraction of interstellar space is filled with a high temperature low density “coronal” gas. In such low density environments SNRs will expand up to 200 pc in radius without thin shell formation which occurs due to radiative cooling effects. Such SNRs can occupy a large fraction of volume of Galaxy and can be the main source of background emissions. In the present work we examine the evolution of the radio emission of shell-like SNR evolving in the hot ISM.

2021 ◽  
Vol 922 (2) ◽  
pp. 121
Author(s):  
Cassandra Lochhaas ◽  
Jason Tumlinson ◽  
Brian W. O’Shea ◽  
Molly S. Peeples ◽  
Britton D. Smith ◽  
...  

Abstract The classical definition of the virial temperature of a galaxy halo excludes a fundamental contribution to the energy partition of the halo: the kinetic energy of nonthermal gas motions. Using simulations of low-redshift, ∼L* galaxies from the Figuring Out Gas & Galaxies In Enzo (FOGGIE) project that are optimized to resolve low-density gas, we show that the kinetic energy of nonthermal motions is roughly equal to the energy of thermal motions. The simulated FOGGIE halos have ∼2× lower bulk temperatures than expected from a classical virial equilibrium, owing to significant nonthermal kinetic energy that is formally excluded from the definition of T vir. We explicitly derive a modified virial temperature including nonthermal gas motions that provides a more accurate description of gas temperatures for simulated halos in virial equilibrium. Strong bursts of stellar feedback drive the simulated FOGGIE halos out of virial equilibrium, but the halo gas cannot be accurately described by the standard virial temperature even when in virial equilibrium. Compared to the standard virial temperature, the cooler modified virial temperature implies other effects on halo gas: (i) the thermal gas pressure is lower, (ii) radiative cooling is more efficient, (iii) O vi absorbing gas that traces the virial temperature may be prevalent in halos of a higher mass than expected, (iv) gas mass estimates from X-ray surface brightness profiles may be incorrect, and (v) turbulent motions make an important contribution to the energy balance of a galaxy halo.


1996 ◽  
Vol 168 ◽  
pp. 263-270
Author(s):  
Giancarlo Setti ◽  
Andrea Comastri

The hard component (3 keV – ~ MeV) of the X-ray background (XRB) comprises the largest portion, ~ 90%, of the overall XRB intensity. The observed isotropy (the entire Galaxy is transparent above 3 keV) provides aprima facieevidence of its prevailing extragalactic nature. A large fraction (~ 75%) of the energy flux falls in the 3 – 100 keV band, the corresponding energy density being ≃ 5×10−5eV cm−3, of which 50% is confined to the narrower 3 – 20 keV band. Although the energy flux carried by the XRB is relatively small compared to other extragalactic backgrounds, it was soon realized that it cannot be accounted for in terms of sources and processes confined to the present epoch. An analysis of the combined observed spectra (Gruber 1992) concludes that, while a thermal bremsstrahlung with an e-folding energy = 41.13 keV accurately fits the data up to 60 keV, above this energy the sum of two power laws is required with normalizations such that at 60 keV the spectral index is ~ 1.6, gradually flattening to ~ 0.7 at MeV energies. It should also be noted that below 10 keV the XRB energy spectrum is well represented by a power law of index α = 0.4 (I∝E−α).


1983 ◽  
Vol 101 ◽  
pp. 385-392
Author(s):  
Donald P. Cox

We observe the heating of interstellar material in young supernova remnants (SNR). In addition, when analyzing the soft X-ray background we find evidence for large isolated regions of apparently hot, low density material. These, we infer, may have been heated by supernovae. One such region seems to surround the Sun. This has been modeled as a supernova remnant viewed from within. The most reasonable parameters are ambient density no ~ 0.004 cm−3, radius of about 100 pc, age just over 105 years (Cox and Anderson 1982).


1982 ◽  
Vol 97 ◽  
pp. 453-459
Author(s):  
A. C. Fabian ◽  
A. K. Kembhavi

The density of intergalactic gas may be an important parameter in the formation of extended radio sources. It may range from ∼ 0.1 particle cm−3 in the centres of some rich clusters of galaxies down to 10−8cm−3 or less in intercluster space. The possible influence of the intracluster gas surrounding NGC 1275 on its radio emission is discussed, and the possibility that a significant fraction of the X-ray background is due to a hot intergalactic medium is explored in some detail.


2013 ◽  
Vol 9 (S304) ◽  
pp. 188-194
Author(s):  
Ezequiel Treister ◽  
Claudia M. Urry ◽  
Kevin Schawinski ◽  
Brooke D. Simmons ◽  
Priyamvada Natarajan ◽  
...  

AbstractIn order to fully understand galaxy formation we need to know when in the cosmic history are supermassive black holes (SMBHs) growing more intensively, in what type of galaxies this growth is happening and what fraction of these sources are invisible at most wavelengths due to obscuration. Active Galactic Nuclei (AGN) population synthesis models that can explain the spectral shape and intensity of the cosmic X-ray background (CXRB) indicate that most of the SMBH growth occurs in moderate-luminosity (LX~ 1044 erg/s) sources (Seyfert-type AGN), at z~ 0.5−1 and in heavily obscured but Compton-thin, NH~ 1023cm−2, systems. However, this is not the complete history, as a large fraction of black hole growth does not emit significantly in X-rays either due to obscuration, intrinsic low luminosities or large distances. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, 22%, occurs in heavily-obscured systems that are not individually detected in even the deepest X-ray observations. We further investigate the AGN triggering mechanism as a function of bolometric luminosity, finding evidence for a strong connection between significant black hole growth events and major galaxy mergers from z~ 0 to z~ 3, while less spectacular but longer accretion episodes are most likely due to other (stochastic) processes. AGN activity triggered by major galaxies is responsible for ~60% of the total black hole growth. Finally, we constrain the total accreted mass density in supermassive black holes at z > 6, inferred via the upper limit derived from the integrated X-ray emission from a sample of photometrically selected galaxy candidates. We estimate an accreted mass density <1000 M⊙Mpc−3 at z~ 6, significantly lower than the previous predictions from some existing models of early black hole growth and earlier prior observations.


1997 ◽  
Vol 166 ◽  
pp. 169-172
Author(s):  
Jonathan D. Slavin

AbstractIn recent years the nature of the low density clouds within the Local Bubble has been increasingly well characterized. These clouds, including the one which surrounds the solar system, are embedded in the hot gas and therefore should be evaporating via thermal conduction. If several evaporation fronts exist within the Local Bubble, the emissivity and spectrum of the hot gas is significantly different from a single temperature, equilibrium ionization plasma. We explore models in which the the temperature, density and ionization in the hot gas are influenced by cloud evaporation and compare the results with the observed Soft X-ray Background.


1994 ◽  
Vol 435 ◽  
pp. 805 ◽  
Author(s):  
Jose Franco ◽  
Walter Warren, III Miller ◽  
S. J. Arthur ◽  
Guillermo Tenorio-Tagle ◽  
Roberto Terlevich

1980 ◽  
Vol 88 ◽  
pp. 397-402
Author(s):  
Frederick M. Walter ◽  
Philip A. Charles ◽  
Stuart Bowyer

RS CVn systems [1] are close binaries consisting of two late-type stars, one of which has evolved to the base of the giant branch. In most cases, the systems appear to be the product of normal stellar evolutionary processes [2,3]. These systems have attracted much recent attention because they exhibit greatly exaggerated stellar activity in the form of strong chromospheric emission [1]. There is evidence that a large fraction of the surface is covered by dark spots [4]. They also exhibit radio emission [5,6], and quiescent and flaring soft X-ray emission [7-12]. If these stars are undergoing normal evolution, why then are they so peculiar?


2020 ◽  
Vol 642 ◽  
pp. A89
Author(s):  
X. Zhang ◽  
A. Simionescu ◽  
H. Akamatsu ◽  
J. S. Kaastra ◽  
J. de Plaa ◽  
...  

Context. Previous Chandra observations of the Abell 3411-3412 merging galaxy cluster system revealed an outbound bullet-like sub-cluster in the northern part and many surface brightness edges at the southern periphery, where multiple diffuse sources are also reported from radio observations. Notably, a southeastern radio relic associated with fossil plasma from a radio galaxy and with a detected X-ray edge provides direct evidence of shock re-acceleration. The properties of the reported surface brightness features have yet to be constrained from a thermodynamic viewpoint. Aims. We use the XMM-Newton and Suzaku observations of Abell 3411-3412 to reveal the thermodynamical nature of the previously reported re-acceleration site and other X-ray surface brightness edges. We also aim to investigate the temperature profile in the low-density outskirts with Suzaku data. Methods. We performed both imaging and spectral analysis to measure the density jump and the temperature jump across multiple known X-ray surface brightness discontinuities. We present a new method to calibrate the vignetting function and spectral model of the XMM-Newton soft proton background. Archival Chandra, Suzaku, and ROSAT data are used to estimate the cosmic X-ray background and Galactic foreground levels with improved accuracy compared to standard blank sky spectra. Results. At the southeastern edge, temperature jumps revealed by both XMM-Newton and Suzaku point to a ℳ ∼ 1.2 shock, which agrees with the previous result from surface brightness fits with Chandra. The low Mach number supports the re-acceleration scenario at this shock front. The southern edge shows a more complex scenario, where a shock and the presence of stripped cold material may coincide. There is no evidence for a bow shock in front of the northwestern “bullet” sub-cluster. The Suzaku temperature profiles in the southern low-density regions are marginally higher than the typical relaxed cluster temperature profile. The measured value kT500 = 4.84 ± 0.04 ± 0.19 keV with XMM-Newton and kT500 = 5.17 ± 0.07 ± 0.13 keV with Suzaku are significantly lower than previously inferred from Chandra.


1988 ◽  
Vol 130 ◽  
pp. 203-206
Author(s):  
A. Mészáros ◽  
P. Mészáros

At present there are in use three different models to characterize the large scale structure of the universe. The clustering model (Soneira and Peebles, 1978) assumes that the superclusters are high density islands in a low density sea. The void model (Joeveer and Einasto, 1978), on the other hand, assumes that the voids are isolated low density islands in a high density sea. The sponge model (Gott et al., 1986) assumes that high and low density regions occupy equal volumes, and that the high and low density regions are both connected. The straightforward way to decide among these three models is the direct investigation of the spatial distribution of the galaxies. Nevertheless, there is an essentially different observational method that may also be useful to obtain some information about these models. The X-ray background radiation (XRB) is due either to the bremsstrahlung of hot intergalactic gas, or to the sum of the radiation of unresolved discrete sources (E.G. Boldt 1987). If the “discrete” origin is correct, then obviously the actual number of sources, and hence their total intensity, may vary from one part of the sky to another. Thus, in this case one has the possibility to estimate the number of sources in a given volume from the observed isotropy of the XRB. For example, Hamilton and Helfand (1987) suggest that the number of sources must be larger than 5000/(degree)2. Any such estimate needs several assumptions. In the previous works one usually assumed that the sources were distributed completely randomly; see, e.g. Fabian (1972). Nevertheless, if the XRB is generated by young galaxies (Bookbinder et al. 1980), it is not excluded that the sources of the SRB are also grouped similarly to galaxies. Because in this case the distribution of sources of the XRB is not completely random, one may expect a different type of fluctuations in the intensity of the XRB. In addition, since the grouping may be quite different for the three structure models, the expected fluctuations may also be different. There is a chance to discriminate among them using the observed isotropy of XRB. The basic observational datum concerning the isotropy of the XRB is well-known: the fluctuations in the intensity are smaller than 3%, if 3° × 3° pixels are used Shafer (1983).


Sign in / Sign up

Export Citation Format

Share Document