scholarly journals Plate Motion and Earth Orientation

1988 ◽  
Vol 129 ◽  
pp. 363-364
Author(s):  
A. Mallama ◽  
M. Kao

Earth orientation series are linked to the terrestrial reference frame in which the observing site locations are measured. The effect of tectonic motion is a simple rotation for any given plate, but the overall effect depends on the distribution of sites. The magnitude of this motion is large enough to be evident in the data. For example, the coefficient of rotation for the North American plate around the Earth's Y-axis is −0.8 millarcseconds per year in the AMO-2 plate motion model of Minster and Jordan. The VLBI analysis system at NASA/GSFC for computing earth orientation series has recently been enhanced by including the Minster and Jordan model for a priori tectonic effects. Tests indicate that the weighted-root-mean-square residual of observations to the solution is decreased by using this model.

1987 ◽  
Vol 24 (6) ◽  
pp. 1086-1097 ◽  
Author(s):  
Mel R. Stauffer ◽  
Don J. Gendzwill

Fractures in Late Cretaceous to Late Pleistocene sediments in Saskatchewan, eastern Montana, and western North Dakota form two vertical, orthogonal sets trending northeast–southwest and northwest–southeast. The pattern is consistent, regardless of rock type or age (except for concretionary sandstone). Both sets appear to be extensional in origin and are similar in character to joints in Alberta. Modem stream valleys also trend in the same two dominant directions and may be controlled by the underlying fractures.Elevation variations on the sub-Mannville (Early Cretaceous) unconformity form a rectilinear pattern also parallel to the fracture sets, suggesting that fracturing was initiated at least as early as Late Jurassic. It may have begun earlier, but there are insufficient data at present to extend the time of initiation.We interpret the fractures as the result of vertical uplift together with plate motion: the westward drift of North America. The northeast–southwest-directed maximum principal horizontal stress of the midcontinent stress field is generated by viscous drag effects between the North American plate and the mantle. Vertical uplift, erosion, or both together produce a horizontal tensile state in near-surface materials, and with the addition of a directed horizontal stress through plate motion, vertical tension cracks are generated parallel to that horizontal stress (northeast–southwest). Nearly instantaneous elastic rebound results in the production of second-order joints (northwest–southeast) perpendicular to the first. In this manner, the body of rock is being subjected with time to complex alternation of northeast–southwest and northwest–southeast horizontal stresses, resulting in the continuous and contemporaneous production of two perpendicular extensional joint sets.


2019 ◽  
Vol 93 (11) ◽  
pp. 2293-2313 ◽  
Author(s):  
R. Zajdel ◽  
K. Sośnica ◽  
M. Drożdżewski ◽  
G. Bury ◽  
D. Strugarek

Abstract The Satellite Laser Ranging (SLR) network struggles with some major limitations including an inhomogeneous global station distribution and uneven performance of SLR sites. The International Laser Ranging Service (ILRS) prepares the time-variable list of the most well-performing stations denoted as ‘core sites’ and recommends using them for the terrestrial reference frame (TRF) datum realization in SLR processing. Here, we check how different approaches of the TRF datum realization using minimum constraint conditions (MCs) and the selection of datum-defining stations affect the estimated SLR station coordinates, the terrestrial scale, Earth rotation parameters (ERPs), and geocenter coordinates (GCC). The analyses are based on the processing of the SLR observations to LAGEOS-1/-2 collected between 2010 and 2018. We show that it is essential to reject outlying stations from the reference frame realization to maintain a high quality of SLR-based products. We test station selection criteria based on the Helmert transformation of the network w.r.t. the a priori SLRF2014 coordinates to reject misbehaving stations from the list of datum-defining stations. The 25 mm threshold is optimal to eliminate the epoch-wise temporal deviations and to provide a proper number of datum-defining stations. According to the station selection algorithm, we found that some of the stations that are not included in the list of ILRS core sites could be taken into account as potential core stations in the TRF datum realization. When using a robust station selection for the datum definition, we can improve the station coordinate repeatability by 8%, 4%, and 6%, for the North, East and Up components, respectively. The global distribution of datum-defining stations is also crucial for the estimation of ERPs and GCC. When excluding just two core stations from the SLR network, the amplitude of the annual signal in the GCC estimates is changed by up to 2.2 mm, and the noise of the estimated pole coordinates is substantially increased.


2020 ◽  
Author(s):  
Menno Fraters ◽  
Wim Spakman ◽  
Cedric Thieulot ◽  
Douwe Van Hinsbergen

<p>The eastern Caribbean Lesser-Antilles subduction system is a strongly arcuate subduction system. We have investigated the dynamics of this system through numerical modelling, demonstrating the developed capabilities and computational feasibility for assessing the 3D complexity and geodynamics of natural subductionsystems and applied this to the eastern Caribbean region. We show the geodynamic feasibility of westward directed trench-parallel slab transport through the mantle, i.e. slab dragging, on the northern segment of the slab, while the eastern segment of the slab is subducting by a mantle-stationary trench. The resistance of the mantle against slab dragging by the North American plate motion, as well as the deformation associated with the arcuate geometry of the slab, creates a complex 3D stress field in the slab that deviates strongly from the classical view of slab-dip aligned orientation of slab stress. More generally this means that the process of slab dragging may reveal itself in the focal mechanisms of intermediate and deep earthquakes. The characteristics of the arcuate subduction such as slab dragging and a complex 3D stress field as studied in the Caribbean region can be more generically applied to other arcuate subduction systems as well, such as the Izu-Bonin-Marianas or the Aleutians-Alaskasystems, where anomalous focal mechanisms of slabs are observed.</p>


1988 ◽  
Vol 129 ◽  
pp. 339-340
Author(s):  
J. W. Ryan ◽  
T. A. Clark

The NASA Crustal Dynamics Project (CDP) has been using VLBI on intercontinental baselines to measure tectonic plate motions since 1979. We report on measurements between sites on the North American plate (Haystack/Westford, MA; Owens Valley and Mojave, CA; Ft. Davis, TX and Gilmore Creek, AK), the Eurasian plate (Onsala, Sweden; Wettzell, West Germany, and Shanghai, China), the Pacific plate (Kauai, HI; Kwajalein in the Marshall Islands, and Vandenberg AFB, CA), the African plate (Hartebesthoek, RSA), and Japan (Kashima).


2020 ◽  
Vol 10 (1) ◽  
pp. 145-152
Author(s):  
M. Rabah ◽  
A. Sedeek

Abstract ITRF (International Terrestrial Reference Frame) determines the origin, alignment of the system ’s fundamental planes or axes, scale, physical constants, and models such as the size, shape, and alignment of the reference ellipsoid. The ITRF is regularly updated to take into account the Earth’s dynamics and is now sufficiently re-fined to ensure that the change between successive ITRF versions is in the order of 1-2 cm. The Egyptian Survey Authority (ESA) established the Egyptian’s HARN (High Accuracy Reference Network) and linked it to the international frame (ITRF1994 epoch1996) as a static frame. As this datum is static, coordinates of stations do not change with time, ignoring both the tectonic motion and the different definitions for all following ITRF realizations. With the continuous increasing progress of using the IGS and CORS stations as well as the merging of the concept of tectonic plate motion, and the Precise Point Positioning technique has a well know precise technique, there were offset in the current coordinates of the HARN network about 40 cm, so a set of simple transformation parameters (T x , T y , T z ) calculated. In the current study, Plate Motion Models (PPM) and Egyptian Deformation Model (EGY-DM) were investigated based on ITRF2008 epoch2015.4 to choose the best model in calculating the computed parameters. The evaluation process of the computed transformation parameters on chosen points of HARN & NACN (Notational Agricultural Cadastral network) demonstrates that the estimated transformation parameters by EGY-DM give the lowest horizontal and vertical differences 16 mm and 17mm, respectively, and with standard deviation does not exceed 2 cm, except one station due to deficiency of observation time.


1984 ◽  
Vol 121 (6) ◽  
pp. 577-587 ◽  
Author(s):  
P. E. R. Lovelock

AbstractThe structure of the northern part of the Arabian platform is reviewed in the light of hitherto unpublished exploration data and the presently accepted kinematic model of plate motion in the region. The Palmyra and Sinjar zones share a common history of development involving two stages of rifting, one in the Triassic–Jurassic and the other during late Cretaceous to early Tertiary times. Deformation of the Palmyra zone during the Mio-Pliocene is attributed to north–south compression on the eastern block of the Dead Sea transcurrent system which occurred after continental collision in the north in southeast Turkey. The asymmetry of the Palmyra zone is believed to result from northward underthrusting along the southern boundary facilitated by the presence of shallow Triassic evaporites. An important NW-SE cross-plate shear zone has been identified, which can be traced for 600 km and which controls the course of the River Euphrates over long distances in Syria and Iraq. Transcurrent motion along this zone resulted in the formation of narrow grabens during the late Cretaceous which were compressed during the Mio-Pliocene. To a large extent, present day structures in the region result from compressional reactivation of old lineaments within the Arabian plate by the transcurrent motion of the Dead Sea fault zone and subsequent continental collision.


2021 ◽  
Author(s):  
Lorenzo G. Candioti ◽  
Joshua D. Vaughan-Hammon ◽  
Thibault Duretz ◽  
Stefan M. Schmalholz

<p>Ultrahigh-pressure (UHP) continental crustal rocks were first discovered in the Western Alps in 1984 and have since then been observed at many convergent plate boundaries worldwide. Unveiling the processes leading to the formation and exhumation of (U)HP metamorphic crustal rocks is key to understand the geodynamic evolution of orogens such as the Alps.</p><p> </p><p>Previous numerical studies investigating (U)HP rock exhumation in the Alps predicted deep (>80 km) subduction of crustal rocks and rapid buoyancy-driven exhumation of mainly incoherent (U)HP units, involving significant tectonic mixing forming so-called mélanges. Furthermore, these predictions often rely on excessive erosion or periods of divergent plate motion as important exhumation mechanism. Inconsistent with field observations and natural data, application of these models to the Western Alps was recently criticised.</p><p> </p><p>Here, we present models with continuous plate convergence, which exhibit local tectonic-driven upper plate extension enabling compressive- and buoyancy-driven exhumation of coherent (U)HP units along the subduction interface, involving feasible erosion.</p><p> </p><p>The two-dimensional petrological-thermo-mechanical numerical models presented here predict both subduction initiation and serpentinite channel formation without any a priori prescription of these two features. The (U)HP units are exhumed coherently, without significant internal deformation. Modelled pressure and temperature trajectories and exhumation velocities of selected crustal units agree with estimates for the Western Alps. The presented models support previous hypotheses of synconvergent exhumation, but do not rely on excessive erosion or divergent plate motion. Thus, our predictions provide new insights into processes leading to the exhumation of coherent (U)HP crustal units consistent with observations and natural data from the Western Alps.</p>


2011 ◽  
Vol 11 (11) ◽  
pp. 29807-29843 ◽  
Author(s):  
J.-T. Lin

Abstract. Vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) retrieved from space provide valuable information to estimate emissions of nitrogen oxides (NOx) inversely. Accurate emission attribution to individual sources, important both for understanding the global biogeochemical cycling of nitrogen and for emission control, remains difficult. This study presents a regression-based multi-step inversion approach to estimate emissions of NOx from anthropogenic, lightning and soil sources individually for 2006 over East China on a 0.25° long × 0.25° lat grid, employing the DOMINO product version 2 retrieved from the Ozone Monitoring Instrument. The nested GEOS-Chem model for East Asia is used to simulate the seasonal variations of different emission sources and impacts on VCDs of NO2 for the inversion purpose. Sensitivity tests are conducted to evaluate key assumptions embedded in the inversion process. The inverse estimate suggests annual budgets of about 7.1 TgN (±38%), 0.22 TgN (±46%), and 0.40 TgN (±48%) for the a posteriori anthropogenic, lightning and soil emissions, respectively, each about 24% higher than the respective a priori values. The enhancements in anthropogenic emissions are largest in cities and areas with extensive use of coal, particularly in the north in winter, as evident on the high-resolution grid. Derived soil emissions are consistent with recent bottom-up estimates. They are each less than 6% of anthropogenic emissions annually, increasing to about 13% for July. Overall, anthropogenic emissions are found to be the dominant source of NOx over East China with important implications for nitrogen control.


Geophysics ◽  
2004 ◽  
Vol 69 (4) ◽  
pp. 978-993 ◽  
Author(s):  
Jo Eidsvik ◽  
Per Avseth ◽  
Henning Omre ◽  
Tapan Mukerji ◽  
Gary Mavko

Reservoir characterization must be based on information from various sources. Well observations, seismic reflection times, and seismic amplitude versus offset (AVO) attributes are integrated in this study to predict the distribution of the reservoir variables, i.e., facies and fluid filling. The prediction problem is cast in a Bayesian setting. The a priori model includes spatial coupling through Markov random field assumptions and intervariable dependencies through nonlinear relations based on rock physics theory, including Gassmann's relation. The likelihood model relating observations to reservoir variables (including lithology facies and pore fluids) is based on approximations to Zoeppritz equations. The model assumptions are summarized in a Bayesian network illustrating the dependencies between the reservoir variables. The posterior model for the reservoir variables conditioned on the available observations is defined by the a priori and likelihood models. This posterior model is not analytically tractable but can be explored by Markov chain Monte Carlo (MCMC) sampling. Realizations of reservoir variables from the posterior model are used to predict the facies and fluid‐filling distribution in the reservoir. A maximum a posteriori (MAP) criterion is used in this study to predict facies and pore‐fluid distributions. The realizations are also used to present probability maps for the favorable (sand, oil) occurrence in the reservoir. Finally, the impact of seismic AVO attributes—AVO gradient, in particular—is studied. The approach is demonstrated on real data from a turbidite sedimentary system in the North Sea. AVO attributes on the interface between reservoir and cap rock are extracted from 3D seismic AVO data. The AVO gradient is shown to be valuable in reducing the ambiguity between facies and fluids in the prediction.


Sign in / Sign up

Export Citation Format

Share Document