scholarly journals The Effects of Field-Aligned Rotation on the Magnetically Channeled Line-Driven Winds

2004 ◽  
Vol 215 ◽  
pp. 525-526
Author(s):  
Asif ud-Doula ◽  
Stanley Owocki

There is extensive evidence that the radiatively driven stellar winds of OB-type stars are not the steady, smooth outflows envisioned in classical models, but instead exhibit extensive structure and variability on a range of temporal and spatial scales. We examine the possible role of stellar magnetic fields in forming large-scale wind structure. It is based on numerical magnetohydrodynamic (MHD) simulations of the interaction of a line-driven flow with an assumed stellar dipole field.Unlike previous fixed-field analyses, the MHD simulations here take full account of the dynamical competition between field and flow, and thus apply to a full range of magnetic field strength, and within both closed and open magnetic topologies. A key result is that the overall degree to which the wind is influenced by the field depends largely on a single, dimensionless, ‘wind magnetic confinement parameter’, η∗ (= B2eqR2∗/Ṁv∞), which characterizes the ratio between magnetic field energy density and kinetic energy density of the wind.We extend these MHD simulations to include field-aligned stellar rotation. The results indicate that a combination of the magnetic confinement parameter and the rotation rate as a fraction of the ‘critical’ rotation now determine the global properties of the wind. For models with strong magnetic confinement, rotation can limit the extent of the last closed magnetic loop, and lead to episodic mass ejections that break through the close loop and are carried outward with a slow, dense, equatorial outflow. Our 2-D numerical simulations indicate that the magnetic fields provide excessive amount of angular momentum to the wind preventing the formation of a Keplerian disk.

2003 ◽  
Vol 212 ◽  
pp. 247-248
Author(s):  
Asif ud-Doula ◽  
Stanley P. Owocki

We present numerical magnetohydrodynamic simulations of the effect of stellar dipole magnetic fields on line-driven wind outflows from hot, luminous stars. Unlike previous fixed-field analyses, the simulations here take full account of the dynamical competition between field and flow, and thus apply to a full range of magnetic field strength, and within both closed and open magnetic topologies. A key result is that the overall degree to which the wind is influenced by the field depends largely on a single, dimensionless, ‘wind magnetic confinement parameter’, η* = B2eqR2*/Mv∞, which characterizes the ratio between magnetic field energy density and kinetic energy density of the wind. For weak confinement η* ≤ 1, the field is fully opened by the wind outflow, but nonetheless for confinements as small as η* = 1/10 can have a significant back-influence in enhancing the density and reducing the flow speed near the magnetic equator. For stronger confinement η* > 1, the magnetic field remains closed over a limited range of latitude and height about the equatorial surface, but eventually is opened into a nearly radial configuration at large radii. Within closed loops, the flow is channeled toward loop tops into shock collisions that are strong enough to produce hard X-rays, with the stagnated material then pulled by gravity back onto the star in quite complex and variable inflow patterns. Within open field flow, the equatorial channeling leads to oblique shocks that are again strong enough to produce X-rays, and also lead to a thin, dense, slowly outflowing ‘disk’ at the magnetic equator. The polar flow is characterized by a faster-than-radial expansion that is more gradual than anticipated in previous 1d flow-tube analyses, and leads to a much more modest increase in terminal speed (< 30%), consistent with observational constraints. Overall, the results here provide a dynamical groundwork for interpreting many types of observations, e.g., UV line-profile variability; red-shifted absorption or emission features; enhanced density-squared emission; and X-ray emission, that might be associated with perturbation of hot-star winds by surface magnetic fields.


1971 ◽  
Vol 43 ◽  
pp. 3-23 ◽  
Author(s):  
Jacques M. Beckers

The different methods which have been used, or which may be used in the future, to measure solar magnetic fields are described and discussed. Roughly these can be divided into three groups (a) those which use the influence of the magnetic field on the electromagnetic radiation, (b) those which use the influence of the field on the structure of the solar atmosphere (MHD effects), and (c) those which use theoretical arguments. The former include the Zeeman effect, the Hanle effect, the gyro and synchrotron radiations and the Faraday rotation of radiowaves. The second includes the alignment of details at all levels of the solar atmosphere, and the calcium network, and the third makes use, for example, of the assumption of equipartition between magnetic and kinetic energy density.


2008 ◽  
Vol 17 (09) ◽  
pp. 1591-1601
Author(s):  
R. SCHLICKEISER

In powerful cosmic nonthermal radiation sources with dominant magnetic-field self generation, the generation of magnetic fields at almost equipartition strength by relativistic plasma instabilities operates as fast as the acceleration or injection of ultra-high energy radiating electrons and hadrons in these sources. Consequently, the magnetic field strength becomes time-dependent and adjusts itself to the actual kinetic energy density of the radiating electrons in these sources. This coupling of the magnetic field and the magnetic field energy density to the kinetic energy of the radiating particles changes both the intrinsic temporal evolution of the relativistic particle energy spectrum after injection and the synchrotron and synchrotron self-Compton emissivities.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Dai G. Yamazaki ◽  
Kiyotomo Ichiki ◽  
Toshitaka Kajino ◽  
Grant J. Mathews

Magnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitudeBλand the power spectral indexnBwhich have been deduced from the available CMB observational data by using our computational framework.


2018 ◽  
Vol 610 ◽  
pp. A84 ◽  
Author(s):  
Iker S. Requerey ◽  
Basilio Ruiz Cobo ◽  
Milan Gošić ◽  
Luis R. Bellot Rubio

Context. Photospheric vortex flows are thought to play a key role in the evolution of magnetic fields. Recent studies show that these swirling motions are ubiquitous in the solar surface convection and occur in a wide range of temporal and spatial scales. Their interplay with magnetic fields is poorly characterized, however. Aims. We study the relation between a persistent photospheric vortex flow and the evolution of a network magnetic element at a supergranular vertex. Methods. We used long-duration sequences of continuum intensity images acquired with Hinode and the local correlation-tracking method to derive the horizontal photospheric flows. Supergranular cells are detected as large-scale divergence structures in the flow maps. At their vertices, and cospatial with network magnetic elements, the velocity flows converge on a central point. Results. One of these converging flows is observed as a vortex during the whole 24 h time series. It consists of three consecutive vortices that appear nearly at the same location. At their core, a network magnetic element is also detected. Its evolution is strongly correlated to that of the vortices. The magnetic feature is concentrated and evacuated when it is caught by the vortices and is weakened and fragmented after the whirls disappear. Conclusions. This evolutionary behavior supports the picture presented previously, where a small flux tube becomes stable when it is surrounded by a vortex flow.


2018 ◽  
Vol 615 ◽  
pp. A58 ◽  
Author(s):  
Hsi-Wei Yen ◽  
Bo Zhao ◽  
Patrick M. Koch ◽  
Ruben Krasnopolsky ◽  
Zhi-Yun Li ◽  
...  

Aims. Ambipolar diffusion can cause a velocity drift between ions and neutrals. This is one of the non-ideal magnetohydrodynamics (MHD) effects proposed to enable the formation of large-scale Keplerian disks with sizes of tens of au. To observationally study ambipolar diffusion in collapsing protostellar envelopes, we compare here gas kinematics traced by ionized and neutral molecular lines and discuss the implication on ambipolar diffusion. Methods. We analyzed the data of the H13CO+ (3–2) and C18O (2–1) emission in the Class 0 protostar B335 obtained with our ALMA observations. We constructed kinematical models to fit the velocity structures observed in the H13CO+ and C18O emission and to measure the infalling velocities of the ionized and neutral gas on a 100 au scale in B335. Results. A central compact (~1′′–2′′) component that is elongated perpendicular to the outflow direction and exhibits a clear velocity gradient along the outflow direction is observed in both lines and most likely traces the infalling flattened envelope. With our kinematical models, the infalling velocities in the H13CO+ and C18O emission are both measured to be 0.85 ± 0.2 km s−1 at a radius of 100 au, suggesting that the velocity drift between the ionized and neutral gas is at most 0.3 km s−1 at a radius of 100 au in B335. Conclusions. The Hall parameter for H13CO+ is estimated to be ≫1 on a 100 au scale in B335, so that H13CO+ is expected to be attached to the magnetic field. Our non-detection or upper limit of the velocity drift between the ionized and neutral gas could suggest that the magnetic field remains rather well coupled to the bulk neutral material on a 100 au scale in this source, and that any significant field-matter decoupling, if present, likely occurs only on a smaller scale, leading to an accumulation of magnetic flux and thus efficient magnetic braking in the inner envelope. This result is consistent with the expectation from the MHD simulations with a typical ambipolar diffusivity and those without ambipolar diffusion. On the other hand, the high ambipolar drift velocity of 0.5–1.0 km s−1 on a 100 au scale predicted in the MHD simulations with an enhanced ambipolar diffusivity by removing small dust grains, where the minimum grain size is 0.1 μm, is not detected in our observations. However, because of our limited angular resolution, we cannot rule out a significant ambipolar drift only in the midplane of the infalling envelope. Future observations with higher angular resolutions (~0. ′′1) are needed to examine this possibility and ambipolar diffusion on a smaller scale.


2010 ◽  
Vol 6 (S271) ◽  
pp. 135-144
Author(s):  
Ellen G. Zweibel

AbstractThe origin and evolution of magnetic fields in the Universe is a cosmological problem. Although exotic mechanisms for magneotgenesis cannot be ruled out, galactic magnetic fields could have been seeded by magnetic fields from stars and accretion disks, and must be continuously regenerated due to the ongoing replacement of the interstellar medium. Unlike stellar dynamos, galactic dynamos operate in a multicomponent gas at low collisionality and high magnetic Prandtl number. Their background turbulence is highly compressible, the plasma β ~ 1, and there has been time for only a few large exponentiation times at large scale over cosmic time. Points of similarity include the importance of magnetic buoyancy, the large range of turbulent scales and tiny microscopic scales, and the coupling between the magnetic field and certain properties of the flow. Understanding the origin and maintenance of the large scale galactic magnetic field is the most challenging aspect of the problem.


1971 ◽  
Vol 43 ◽  
pp. 580-587 ◽  
Author(s):  
P. Charvin

We present polarization measurements obtained in 1970 in the green coronal line with a new coronameter located at the Pic du Midi. The analysis of these data has been conducted with the theory given by the writer in 1964 and 1965. It appears that magnetic field orientations in the Corona can be deduced from the above measurements. First results showing large scale magnetic structures are presented.


Sign in / Sign up

Export Citation Format

Share Document