scholarly journals Keck Spectroscopy of Moderate Redshift Galaxies Imaged by HST

1996 ◽  
Vol 171 ◽  
pp. 375-375
Author(s):  
Duncan Forbes ◽  
A. Phillips ◽  
D. Koo ◽  
G. Illingworth

Combining the results from Keck spectral and HST imaging data (Forbes et al. 1994), we have derived various quantitative parameters for 17 faint (I ∼ 21), distant (z ∼ 0.5) galaxies. Such redshifts correspond to a look–back time that is about half the age of the Universe and for which some scenarios predict significant galaxy evolution. We have measured disk scale lengths (with sizes ranging from 1–5 kpc) from fits to the surface brightness profiles and internal velocities with a rest frame resolution of σ = 55 to 80 km s–1 by fitting to the emission lines. The luminosity–disk size and luminosity–internal velocity relations for our moderate redshift galaxies are similar to the scaling relations seen for local galaxies, albeit with modest ΔMB ∼ 1m brightening. We do not see evidence for a dominant population of starbursting dwarf galaxies, that have disappeared by the present epoch. Further details of this study can be found in Forbes et al. (1995). When large samples of kinematic data on distant galaxies are available, we will be able to trace galaxy evolution by mass as distinct from light.

2019 ◽  
Vol 485 (3) ◽  
pp. 3409-3429 ◽  
Author(s):  
R Gallagher ◽  
R Maiolino ◽  
F Belfiore ◽  
N Drory ◽  
R Riffel ◽  
...  

Abstract Several models have predicted that stars could form inside galactic outflows and that this would be a new major mode of galaxy evolution. Observations of galactic outflows have revealed that they host large amounts of dense and clumpy molecular gas, which provide conditions suitable for star formation. We have investigated the properties of the outflows in a large sample of galaxies by exploiting the integral field spectroscopic data of the large MaNGA-SDSS4 galaxy survey. We find evidence for prominent star formation occurring inside at least 30 per cent of the galactic outflows in our sample, whilst signs of star formation are seen in up to half of the outflows. We also show that even if star formation is prominent inside many other galactic outflows, this may have not been revealed as the diagnostics are easily dominated by the presence of even faint active galactic nucleus and shocks. If very massive outflows typical of distant galaxies and quasars follow the same scaling relations observed locally, then the star formation inside high-z outflows can be up to several 100 $\rm M_{\odot }~yr^{-1}$ and could contribute substantially to the early formation of the spheroidal component of galaxies. Star formation in outflows can also potentially contribute to establishing the scaling relations between black holes and their host spheroids. Moreover, supernovae exploding on large orbits can chemically enrich in situ and heat the circumgalactic and intergalactic medium. Finally, young stars ejected on large orbits may also contribute to the reionization of the Universe.


2018 ◽  
Vol 616 ◽  
pp. A48 ◽  
Author(s):  
J. Selsing ◽  
T. Krühler ◽  
D. Malesani ◽  
P. D’Avanzo ◽  
S. Schulze ◽  
...  

It is notoriously difficult to localize short γ-ray bursts (sGRBs) and their hosts to measure their redshifts. These measurements, however, are critical for constraining the nature of sGRB progenitors, their redshift distribution, and the r-process element enrichment history of the universe. Here we present spectroscopy of the host galaxy of GRB 111117A and measure its redshift to be z = 2.211. This makes GRB 111117A the most distant high-confidence short duration GRB detected to date. Our spectroscopic redshift supersedes a lower, previously estimated photometric redshift value for this burst. We use the spectroscopic redshift, as well as new imaging data to constrain the nature of the host galaxy and the physical parameters of the GRB. The rest-frame X-ray derived hydrogen column density, for example, is the highest compared to a complete sample of sGRBs and seems to follow the evolution with redshift as traced by the hosts of long GRBs. From the detection of Lyα emission in the spectrum, we are able to constrain the escape fraction of Lyα in the host. The host lies in the brighter end of the expected sGRB host brightness distribution at z = 2.211, and is actively forming stars. Using the observed sGRB host luminosity distribution, we find that between 43% and 71% of all Swift-detected sGRBs have hosts that are too faint at z ~ 2 to allow for a secure redshift determination. This implies that the measured sGRB redshift distribution could be incomplete at high redshift. The high z of GRB 111117A is evidence against a lognormal delay-time model for sGRBs through the predicted redshift distribution of sGRBs, which is very sensitive to high-z sGRBs. From the age of the universe at the time of GRB explosion, an initial neutron star (NS) separation of a0 < 3.1 R⊙ is required in the case where the progenitor system is a circular pair of inspiralling NSs. This constraint excludes some of the longest sGRB formation channels for this burst.


2016 ◽  
Vol 12 (S324) ◽  
pp. 49-53
Author(s):  
N. R. Tanvir

AbstractOur understanding of gamma-ray bursts (GRBs) has come a long way in the past fifty years since their first detection. We now know that GRBs arise in distant galaxies and that there are at least two distinct sub-classes, the long-duration class being produced by some rare massive star core collapse and the short-duration class likely by compact binary mergers involved neutron stars. In both cases, the final remnant will be a stellar-mass black-hole or a massive neutron star. The bursts themselves are associated with ultra-relativistic jetted outflows created by these events, and their afterglows by the impact of these outflows on the surrounding circumburst material. Increasingly GRBs are also being used as probes of the universe, both for understanding galaxy evolution back to the era of reionization, and for the physics of gravitational wave sources. However, many aspects of GRBs remain poorly understood, some pointers to which are given here.


2009 ◽  
Vol 5 (S266) ◽  
pp. 499-499
Author(s):  
S. M. Petty ◽  
D. F. de Mello ◽  
J. P. Gardner ◽  
J. S. Gallagher

AbstractWe explore the multiwavelength properties of three nearby starburst galaxies: NGC 3079, NGC 7673, and Mrk 08. We established that each of these galaxies has similar rest-frame far-ultraviolet (FUV) morphologies as Lyman-break galaxies (LBGs) at z ~ 1.5 and 4, when the age of the Universe was ~ 4.3 and ~ 1.6 Gyr, respectively. LBGs are at an important stage in galaxy evolution when the Universe had a peak in the star-formation-rate density. Many LBGs are primarily composed of star-forming clumps, i.e., stellar clusters, with a significant lack of older stellar populations. Here, we present the comparison of the spectral-energy distributions (SEDs) of three nearby starburst galaxies with those of typical LBGs. From our nearby sample, each object has been artificially redshifted to observe what the galaxies would look like at z ~ 1 to 4 in the rest-frame FUV. NGC 3079 is an edge-on Seyfert 2 galaxy. It has a bright bulge and is interacting with two other galaxies, with extended Hi only along NGC 3079. The redshifting process changes its appearance, so that at high z it looks like a chain galaxy with multiple knots of star formation and no bulge. NGC 7673 has extended Hi and the star formation is mostly within the inner optical region in the multiple star-forming clumps defining the galaxy morphology. In the FUV, the galaxy looks highly compact with little detail resolved. As it is artificially redshifted, the galaxy continues to look more spherical. Mrk 8 is a merging pair, with the two galaxies observable in the visible spectrum. It is classified as a Wolf–Rayet galaxy, which suggests a very young burst, and is composed of several large star-forming regions. The FUV image does not resolve the separate galaxies, and the appearance remains similar for each redshift. We use the Gini coefficient, M20, and the Sérsic index to quantify the morphologies. The SEDs of the objects have similarities with LBG stellar population models. Because these local galaxies can be studied in more detail, they act as a bridge between nearby observations of starburst galaxies and high-z starburst galaxies such as LBGs.


Author(s):  
Luigi Spinoglio ◽  
Sabrina Mordini ◽  
Juan Antonio Fernández-Ontiveros ◽  
Almudena Alonso-Herrero ◽  
Lee Armus ◽  
...  

Abstract We use the SPace Infrared telescope for Cosmology and Astrophysics (SPICA) project as a template to demonstrate how deep spectrophotometric surveys covering large cosmological volumes over extended fields (1– $15\, \rm{deg^2}$ ) with a mid-IR imaging spectrometer (17– $36\, \rm{\rm{\upmu m}}$ ) in conjunction with deep $70\, \rm{\rm{\upmu m}}$ photometry with a far-IR camera, at wavelengths which are not affected by dust extinction can answer the most crucial questions in current galaxy evolution studies. A SPICA-like mission will be able for the first time to provide an unobscured three-dimensional (3D, i.e. x, y, and redshift z) view of galaxy evolution back to an age of the universe of less than $\sim$ 2 Gyrs, in the mid-IR rest frame. This survey strategy will produce a full census of the Star Formation Rate (SFR) in the universe, using polycyclic aromatic hydrocarbons (PAH) bands and fine-structure ionic lines, reaching the characteristic knee of the galaxy luminosity function, where the bulk of the population is distributed, at any redshift up to $z \sim 3.5$ . Deep follow-up pointed spectroscopic observations with grating spectrometers onboard the satellite, across the full IR spectral range (17– $210\, \rm{\rm{\upmu m}}$ ), would simultaneously measure Black Hole Accretion Rate (BHAR), from high-ionisation fine-structure lines, and SFR, from PAH and low- to mid-ionisation lines in thousands of galaxies from solar to low metallicities, down to the knee of their luminosity functions. The analysis of the resulting atlas of IR spectra will reveal the physical processes at play in evolving galaxies across cosmic time, especially its heavily dust-embedded phase during the activity peak at the cosmic noon ( $z \sim 1$ –3), through IR emission lines and features that are insensitive to the dust obscuration.


1996 ◽  
Vol 175 ◽  
pp. 591-592
Author(s):  
Y.N. Parijskij ◽  
N.S. Soboleva ◽  
W.M. Goss ◽  
A.I. Kopylov ◽  
O.V. Verkhodanov ◽  
...  

We present the preliminary results of the “BIG TRIO” project of penetration into the “Dark Age” of the Universe, between the recombination epoch and the epoch of the first QSO using RATAN-600 “Cold Experiment” deep (few mJy) multi-frequency strip survey (Parijskij, Korolkov, 1986; Parijskij et.al,1991,1992). Our general approach is close to the classical SS FRII RG selection rules of very distant galaxies with old stellar population (McCarthy, 1993) with small improvements. Details may be found in (Kopylov et al, 1995). Mean estimated z of our SS FRII RG's is about 1.5, 20% of all objects have z larger than 3. Before the direct spectroscopy of all SS FRII objects we have estimated their redshifts by different methods: using the updated Hubble diagram, θ-z and flux density-z relations and now begun to use multi-color measuring all our objects to estimate “color z” and a stellar age of the parent galaxies using available models of stellar population evolution in such objects (gE class). The first subgroup of 16 objects (not the weakest ones) measured in BVRI gave us the following preliminary results using Bruzual-Charlot model (Bruzual et al., 1993). Looking at this Table, we can make the following statements: mean color z occurred to be very close (within 15%) to the photometric z, but individual redshifts may differ. A mean age of the stellar population is about 1 Gyr, and, at least in some objects, star formation began when the Universe was only 1 Gyr old (Ω0 = 1, H0 = 50), that is older than the most distant QSOs. One object, RC0934+0505, happened to be the oldest object found up to now. We estimate, that there are about 10000 objects with such an age on the sky which can be easily selected (especially with new generation of radio and optical catalogs now in preparation) and fully studied spectroscopically even by present day facilities. The only evolution effect we have noticed is that more distant objects have smaller ages of stellar populations. There is weak z-dependence of the ratio of radio to optical luminosities in the objects of our list, which disappears when we take into account the K- correction to the SED in gE.


2014 ◽  
Vol 8 (6) ◽  
pp. 186
Author(s):  
Alilou Khalid ◽  
Az-Eddine L. Marrakchi

Author(s):  
Abraham Loeb ◽  
Steven R. Furlanetto

This book provides a comprehensive, self-contained introduction to one of the most exciting frontiers in astrophysics today: the quest to understand how the oldest and most distant galaxies in our universe first formed. Until now, most research on this question has been theoretical, but the next few years will bring about a new generation of large telescopes that promise to supply a flood of data about the infant universe during its first billion years after the big bang. This book bridges the gap between theory and observation. It is an invaluable reference for students and researchers on early galaxies. The book starts from basic physical principles before moving on to more advanced material. Topics include the gravitational growth of structure, the intergalactic medium, the formation and evolution of the first stars and black holes, feedback and galaxy evolution, reionization, 21-cm cosmology, and more.


2020 ◽  
Vol 498 (1) ◽  
pp. 164-180 ◽  
Author(s):  
Harley Katz ◽  
Dominika Ďurovčíková ◽  
Taysun Kimm ◽  
Joki Rosdahl ◽  
Jeremy Blaizot ◽  
...  

ABSTRACT Identifying low-redshift galaxies that emit Lyman continuum radiation (LyC leakers) is one of the primary, indirect methods of studying galaxy formation in the epoch of reionization. However, not only has it proved challenging to identify such systems, it also remains uncertain whether the low-redshift LyC leakers are truly ‘analogues’ of the sources that reionized the Universe. Here, we use high-resolution cosmological radiation hydrodynamics simulations to examine whether simulated galaxies in the epoch of reionization share similar emission line properties to observed LyC leakers at z ∼ 3 and z ∼ 0. We find that the simulated galaxies with high LyC escape fractions (fesc) often exhibit high O32 and populate the same regions of the R23–O32 plane as z ∼ 3 LyC leakers. However, we show that viewing angle, metallicity, and ionization parameter can all impact where a galaxy resides on the O32–fesc plane. Based on emission line diagnostics and how they correlate with fesc, lower metallicity LyC leakers at z ∼ 3 appear to be good analogues of reionization-era galaxies. In contrast, local [S ii]-deficient galaxies do not overlap with the simulated high-redshift LyC leakers on the S ii Baldwin–Phillips–Terlevich (BPT) diagram; however, this diagnostic may still be useful for identifying leakers. We use our simulated galaxies to develop multiple new diagnostics to identify LyC leakers using infrared and nebular emission lines. We show that our model using only [C ii]158 μm and [O iii]88 μm can identify potential leakers from non-leakers from the local Dwarf Galaxy Survey. Finally, we apply this diagnostic to known high-redshift galaxies and find that MACS 1149_JD1 at z = 9.1 is the most likely galaxy to be actively contributing to the reionization of the Universe.


Sign in / Sign up

Export Citation Format

Share Document