scholarly journals Précis of Simple heuristics that make us smart

2000 ◽  
Vol 23 (5) ◽  
pp. 727-741 ◽  
Author(s):  
Peter M. Todd ◽  
Gerd Gigerenzer

How can anyone be rational in a world where knowledge is limited, time is pressing, and deep thought is often an unattainable luxury? Traditional models of unbounded rationality and optimization in cognitive science, economics, and animal behavior have tended to view decision-makers as possessing supernatural powers of reason, limitless knowledge, and endless time. But understanding decisions in the real world requires a more psychologically plausible notion of bounded rationality. In Simple heuristics that make us smart (Gigerenzer et al. 1999), we explore fast and frugal heuristics – simple rules in the mind's adaptive toolbox for making decisions with realistic mental resources. These heuristics can enable both living organisms and artificial systems to make smart choices quickly and with a minimum of information by exploiting the way that information is structured in particular environments. In this précis, we show how simple building blocks that control information search, stop search, and make decisions can be put together to form classes of heuristics, including: ignorance-based and one-reason decision making for choice, elimination models for categorization, and satisficing heuristics for sequential search. These simple heuristics perform comparably to more complex algorithms, particularly when generalizing to new data – that is, simplicity leads to robustness. We present evidence regarding when people use simple heuristics and describe the challenges to be addressed by this research program.

2021 ◽  
Author(s):  
Roope Oskari Kaaronen ◽  
Mikael A. Manninen ◽  
Jussi T. Eronen

This article combines insights from ecological rationality and cultural evolution to illustrate how simple heuristics – colloquially, “rules of thumb” – have guided human behaviour and the evolution of complex cultures. Through a variety of examples and case studies, we discuss how human cultures have used rules of thumb in domains as diverse as foraging, resource management, social learning, moral judgment, and cultural niche construction. We propose four main arguments. Firstly, we argue that human societies have a rich cultural history in applying rules of thumb to guide daily activities and social organization. Second, we emphasise how rules of thumb may be convenient units of cultural transmission and high-fidelity social learning – the backbones of cumulative cultural evolution. Third, we highlight how rules of thumb can facilitate efficient decision making by making use of environmental and bodily features. Fourth, we discuss how simple rules of thumb may serve as building blocks for the emergence of more complex cultural patterns. This paper sets a research agenda for studying how simple rules contribute to cultural evolution in the past, the present, and the Anthropocene future.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ling Xin ◽  
Xiaoyang Duan ◽  
Na Liu

AbstractIn living organisms, proteins are organized prevalently through a self-association mechanism to form dimers and oligomers, which often confer new functions at the intermolecular interfaces. Despite the progress on DNA-assembled artificial systems, endeavors have been largely paid to achieve monomeric nanostructures that mimic motor proteins for a single type of motion. Here, we demonstrate a DNA-assembled building block with rotary and walking modules, which can introduce new motion through dimerization and oligomerization. The building block is a chiral system, comprising two interacting gold nanorods to perform rotation and walking, respectively. Through dimerization, two building blocks can form a dimer to yield coordinated sliding. Further oligomerization leads to higher-order structures, containing alternating rotation and sliding dimer interfaces to impose structural twisting. Our hierarchical assembly scheme offers a design blueprint to construct DNA-assembled advanced architectures with high degrees of freedom to tailor the optical responses and regulate multi-motion on the nanoscale.


2015 ◽  
Vol 112 (27) ◽  
pp. 8187-8192 ◽  
Author(s):  
Michael D. Hardy ◽  
Jun Yang ◽  
Jangir Selimkhanov ◽  
Christian M. Cole ◽  
Lev S. Tsimring ◽  
...  

Cell membranes are dynamic structures found in all living organisms. There have been numerous constructs that model phospholipid membranes. However, unlike natural membranes, these biomimetic systems cannot sustain growth owing to an inability to replenish phospholipid-synthesizing catalysts. Here we report on the design and synthesis of artificial membranes embedded with synthetic, self-reproducing catalysts capable of perpetuating phospholipid bilayer formation. Replacing the complex biochemical pathways used in nature with an autocatalyst that also drives lipid synthesis leads to the continual formation of triazole phospholipids and membrane-bound oligotriazole catalysts from simpler starting materials. In addition to continual phospholipid synthesis and vesicle growth, the synthetic membranes are capable of remodeling their physical composition in response to changes in the environment by preferentially incorporating specific precursors. These results demonstrate that complex membranes capable of indefinite self-synthesis can emerge when supplied with simpler chemical building blocks.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aleksey E. Kuznetsov

Abstract Various (metallo)porphyrins and related compounds have been intensively investigated by different research groups due to their extremely important role in living organisms along with their versatile applications in technology. The design of novel porphyrinoids by core-modification, or substitution of pyrrole nitrogens, with the elements of other groups of the Periodic Table has been considered as a highly promising methodology for tuning structures and properties of porphyrinoids and thus opening new possible applications for them. Much effort has been given to the modifications of the porphyrin core with elements of the main groups, namely O, S, Se (chalcogens), and the heavier congener of nitrogen, phosphorus. In general, the porphyrin core modification by replacing nitrogens with heteroatoms is a promising and effective strategy for obtaining new compounds with unusual structures and properties (optical, electrochemical, coordinating, etc.) as well as reactivity. These novel molecules can also be employed as promising building or construction blocks in various applications in the nanotechnology area.


2007 ◽  
Vol 6 (4) ◽  
pp. 267-271 ◽  
Author(s):  
Avnish Kumar Arora ◽  
Varsha Tomar ◽  
Aarti ◽  
K.T. Venkateswararao ◽  
Kamaluddin

AbstractRecent findings on the presence of water on Mars (Baker, V.R. (2006). Geomorphological evidence for water on Mars. Elements2(3), 139–143; DeJong, E. (2006). Geological evidence of the presence of water on Mars. Abstracts from the 40th Western Regional Meeting of the American Chemical Society, Anaheim, CA, January, 2006, pp. 22–25. American Chemical Society, Washington, DC; McSween, H.Y. Jr. (2006). Water on Mars. Elements2(3), 135–137; Mitrofanov, I.G. (2005). Water explorations on Mars. Priroda9, 34–43) strongly suggest that there existed a period of chemical evolution eventually leading to life processes on primitive Mars (Kanavarioti, A. & Maneinelli, R.L. (1990). Could organic matter have been preserved on Mars for 3.5 billion years. Icarus84, 196–202). Owing to the adverse conditions, it is quite likely that the process of chemical evolution would have been suppressed and any living organisms that formed would have become extinct over time on Mars. The presence of water as a necessity for the survival of living organisms and the presence of grey haematite, originated under aqueous conditions, have led us to investigate the possible role of haematite in the chemical evolution on Mars. Our observations suggest that iron oxide hydroxide (FeOOH), a precursor of haematite, has a much higher binding affinity towards ribose nucleotides (the building blocks of RNA) than the haematite itself. This would mean that during the process of haematite formation, especially through the probable process of Fe3+ hydrolysis by aqueous ammonia, the precursors of haematite might have played a significant role in the processes leading to chemical evolution and the possible origin of life on Mars.


2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Ruichen Sun

It is very natural, Ruichen Sun, a behavioral neuroscientist, observes, to suppose that animal behavior is under some form of algorithmic control. Simple rules often offer a compelling account of complex behavior. The Murmuration of Swallows is an example. Both the delight, and the devil, are in the comparative details.


Author(s):  
Joe Lamantia

This article defines the standardized elements used in the building blocks portal design framework in detail, as the second in a series of articles on a Portal Design Framework. This article explains the (simple) rules and relationships for combining Containers and Connectors into portal structures. This article shares best practices, examples, and guidelines for effectively using the building blocks framework during portal design efforts.


2017 ◽  
Vol 17 (4) ◽  
pp. 39-49
Author(s):  
Sarah Goswami ◽  
Vicki Lane

Increasingly, government departments are being held accountable for investment in public services. In Queensland the Financial Accountability Act 2009 (Queensland Treasury, 2016) requires that accountable officers and statutory bodies ‘achieve reasonable value for money by ensuring the operations of the department or statutory body are carried out efficiently, effectively and economically’ (Section 61). Whilst there is a directive for agencies to evaluate and demonstrate value for money, it has in practice been difficult to embed long term, as many systems and decision makers have neglected the role of organisation-wide evaluation capital. This paper will outline the work being undertaken in the Queensland Department of Agriculture and Fisheries (DAF) to implement an Impact and Investment Framework, which will support and embed evaluation in a multidisciplinary setting. A central tenant of this framework is ‘business empowerment and learning'—building the evaluation culture in the organisation by first establishing evaluation building blocks, through business empowerment, support and utility. The framework is comprised of five key elements and is built on the principles of evaluation and evaluation capacity building disciplines. It has been designed to be low-cost, effective and efficient, whilst enabling business improvement, meeting accountability needs and allowing the department to demonstrate the value of its work.


2018 ◽  
Vol 28 (3) ◽  
pp. 545-557 ◽  
Author(s):  
Jacek M. Leski ◽  
Marian P. Kotas

Abstract This paper introduces a method of data clustering that is based on linguistically specified rules, similar to those applied by a human visually fulfilling a task. The method endeavors to follow these remarkable capabilities of intelligent beings. Even for most complicated data patterns a human is capable of accomplishing the clustering process using relatively simple rules. His/her way of clustering is a sequential search for new structures in the data and new prototypes with the use of the following linguistic rule: search for prototypes in regions of extremely high data densities and immensely far from the previously found ones. Then, after this search has been completed, the respective data have to be assigned to any of the clusters whose nuclei (prototypes) have been found. A human again uses a simple linguistic rule: data from regions with similar densities, which are located exceedingly close to each other, should belong to the same cluster. The goal of this work is to prove experimentally that such simple linguistic rules can result in a clustering method that is competitive with the most effective methods known from the literature on the subject. A linguistic formulation of a validity index for determination of the number of clusters is also presented. Finally, an extensive experimental analysis of benchmark datasets is performed to demonstrate the validity of the clustering approach introduced. Its competitiveness with the state-of-the-art solutions is also shown.


2011 ◽  
Vol 58 (2) ◽  
Author(s):  
Hieronim Jakubowski

All living organisms conduct protein synthesis with a high degree of accuracy maintained in the transmission and flow of information from a gene to protein product. One crucial 'quality control' point in maintaining a high level of accuracy is the selectivity by which aminoacyl-tRNA synthetases furnish correctly activated amino acids, attached to tRNA species, as the building blocks for growing protein chains. When differences in binding energies of amino acids to an aminoacyl-tRNA synthetase are inadequate, editing is used as a major determinant of enzyme selectivity. Some incorrect amino acids are edited at the active site before the transfer to tRNA (pre-transfer editing), while others are edited after transfer to tRNA at a separate editing site (post-transfer editing). Access of natural non-protein amino acids, such as homocysteine, homoserine, or ornithine to the genetic code is prevented by the editing function of aminoacyl-tRNA synthetases. Disabling editing function leads to tRNA mischarging errors and incorporation of incorrect amino acids into protein, which is detrimental to cell homeostasis and inhibits growth. Continuous homocysteine editing by methionyl-tRNA synthetase, resulting in the synthesis of homocysteine thiolactone, is part of the process of tRNA aminoacylation in living organisms, from bacteria to man. Excessive homocysteine thiolactone synthesis in hyperhomocysteinemia caused by genetic or nutritional deficiencies is linked to human vascular and neurological diseases.


Sign in / Sign up

Export Citation Format

Share Document